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ABSTRACT 

Wave based method (WBM) is presented to analyze the vibration and acoustic responses of 

underwater cylindrical shell with bulkheads under a radial harmonic excitation. The hull is divided 

into several substructures and the dynamic field variables in each substructure are expressed as wave 

function expansions. The stiffeners and bulkheads are treated as discrete members and the equations of 

motion of annular plate are adopted to describe the motion of them. Boundary and continuity 

conditions between adjacent substructures are used to form the final matrix to be solved. The far-field 

radiated sound pressure is then calculated by means of the Element Radiation Superposition Method 

(ERSM). By comparison with computational results obtained from a fully coupled finite 

element/boundary element model, the present method is verified. Furthermore, effects of bulkheads 

and location of exciting force on vibro-acoustic characteristics of cylindrical shell have been 

discussed. The results show that bulkhead thickness has negligible influence on the response, but the 

number of bulkheads, the location of bulkheads and the exciting force have significant effects. 
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1. INTRODUCTION 

The cylindrical shell reinforced with ring stiffeners is widely used in structural design and the 

dynamic and acoustic responses of it have received much research attention. The vibration and 

acoustic analysis of such stiffened shells are studied either by treating stiffeners as discrete member 

(1, 2) or by applying “smeared out” technique (3-5). In order to accommodate various design 

requirements in practical engineering applications, the shell is often divided into compartments by 

bulkheads, which can be represented by circular plate. Ref. (6) has studied the dynamic response 

caused by cylinder/plate discontinuity and the analytical model in Ref. (6) can be developed to 

describe bulkheads. When the finite shell is submerged in heavy fluid, such as water, the 

fluid-loading effect has to be considered in the model of cylindrical shell (7, 8). Ref. (4, 5) discussed 

the influence of bulkheads and fluid-loading on the structural and acoustic responses, but the force 

was located at the end plate and only the modes of n=0 and n=1 were excited, which results in the 

conclusion that bulkheads has no significant effects on the response. 

For the reason of only a small number of simple structures allowing analytical solution of the 

Helmholtz formulation calculating the radiated pressure from structures , many researchers have 

investigated approximate methods for finite cylindrical shell, such as boundary element method (9), 

coupled finite/boundary element method (10). Element radiation superposition method (ERSM) was 

proposed by Wang (11) and was based on two assumptions. The first is that the elements on radiating 

surface could be treated as rigid piston with a rigid cylindrical baffle as the size of elements is small 

enough, and the second is that the pressure of far field point is the superposition of radiated pressure 

from all elements. ERSM is superior in terms of computational efficiency, especially for large scale 
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structures. 

Wave based method (WBM) was proposed in Ref. (12) for prediction of the steady-state dynamic 

analysis of coupled vibro-acoustic systems. The field variables are expanded in terms of structural 

and acoustic wave functions which satisfy the dynamic equations accurately. Ref. (13) developed the 

WBM to analyze the free vibration characteristics of cylindrical shell with non-uniform stiffener 

distribution. In Ref. (13), the equations of motion of annular plate were adopted to describe the 

motion of stiffeners in contrast with the conventional beam model (1, 2), and an excellent agreement 

was obtained compared with the experimental and computational results, even though the 

eccentricity of stiffeners is not zero. 

In this paper, WBM is developed for the dynamic analysis of underwater cylindrical shell with 

stiffeners and bulkheads. The hull is divided into several substructures first, such as cylindrical shells, 

annular plates and circular plates, then select the wave functions which accurately satisfy governing 

dynamic equations of the substructure, last assemble the matrix of boundary and continuity 

conditions at junctions and solve the matrix to obtain the vibration response, which is used to predict 

far-field pressure by means of ERSM. 

2. THEORETICAL FORMULATIONS 

2.1 Motion Equations 

Stiffeners and bulkheads appear as discontinuities and divide the cylindrical shell into different 

substructures, such as cylindrical shells, annular plates and circular plates. Fig. 1(a) shows 

coordinate system, displacements and forces of cylindrical shell, , ,u v ware the axial, circumferential, 

radial direction displacements, w x    is the twist angle, , ,M S T and N designate bending 

moment, transverse shear, tangential shear and axial force per unit length of the cylindrical shell, and 

their detailed expressions can be obtained in Ref. (14). Fig. 1(b) shows coordinate system, 

displacements and forces of annular plate, ,p pu v and pw are the in and out-plane displacements, 

p w r    is the twist angle, ,pxN ,prN pN  and pM denote the transverse shear, radial, tangential 

shear force and moment per unit length of the annular plate, respectively. 

 
 

(a)Cylindrical shell (b)Annular plate 

Figure 1 - Coodinate system, displacements and forces of substructures 

The equations of motion for cylindrical shell can be written by Donnell-Mushtari theory as 
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(1) 

where R is the mean radius of the cylindrical shell, h is the shell thickness, E, ρ, υ are, respectively, 

the Young’s modulus, density and Poisson’s ratio of the shell, k=h
2
/(12R

2
)

 
is the thickness parameter, 

2 1/2[ / (1 )]Lc E     is the longitudinal wave speed. FL is the fluid loading term due to the presence 

of the surrounding fluid acoustic field and can be approximately given in terms of a fluid-loaded 

infinite model (15) 
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where
LR c  is non-dimensional circular frequency,   is circular frequency and 

f  is the 

density of fluid. 
nH  is the Hankel function of order n and '

nH  is its derivative respect to the 

argument. kf is the acoustic wave number and k is the axial wave number. When kf<k the Hankel 

function is replaced by a modified Hankel function Kn of real argument. 

The stiffeners and bulkheads are treated as discrete members, the motions of which are described 

by the equations of motion of annular plate (6) 
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where 4 2 2 2 2 2 2[ / (1/ ) / (1/ ) / ]r r r r        , 2/12(1 )p p p pD E h   . 
pE ,

ph ,
p and 

p are the Young’s 

modulus , thickness , density and Poisson’s ratio of the plate, respectively. 

2.2 Selection of Wave Functions 

In the wave based method, the displacement components of the shell and annular plate are 

expressed as 

1 1 1

cos( ) , sin( ) , cos( )
s s sn n n

j t j t j t

i ui i vi i wi

i i i

u A n e v B n e w C n e      

  

         (4) 

where ,ui vi  and
wi , which are the functions of x and r for cylindrical shell and annular plate, are 

the structure wave functions satisfying Eq. (1) and (2) for a particular circumferential mode number 

n. ,i iA B and
iC are the wave contribution factors. 

sn is the number of wave functions designing the 

wave propagation in the axial direction for the cylindrical shell and  in the radial direction for the 

annular plate. 

According to Ref. (1), njk x

ui vi wi e    . Substituting Eq. (4) into (1), three linear equations 

in terms of ,iA iB and
iC  are obtained. For nontrivial solution, the determinant of their coefficients 

must vanish and a characteristic equation in terms of 
nk  is obtained. Eight eigenvalues are obtained 

by meaning of numerical method to solve the characteristic equation. For each value of , ( 1:8)n ik i  , 

the axial and circumferential wave contribution facts can be obtained as 
i i iA C  and ,n i i iB C  , 

respectively, so that the eight selected wave functions of cylindrical shell are as follows: 
, 1:8n ijk x

ui vi wi e i      (5) 

Replacing
,n iC by

,n iW , the relationships of wave contribution factors of cylindrical shell are 

, , , ,n i n i n iA W , , , ( 1:8)n i n i n iB W i  , which means ns equals 8 for cylindrical shell. 

According to Ref. (6), there are a set of wave functions to compose the variable field of annular 

plat: 
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 (6) 

where ,n nJ Y are, respectively, the Bessel function functions of the first and second kind, and ,n nI K are 

the modified Bessel functions of the first and second kind, respectively. 2 1/4( / )pB p p pk h D  is the 

plate bending wavenumber, 2 1/ 2[ (1 ) / ]pL p p pk E    and 1/2[ (1 ) / ]pT p p pk E    are the wavenumber 

for in-plane waves in the plate. Although there seems to be 12 wave functions for annular plate from 
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Eq. (6), the wave functions of 
upi and

vpi are essentially identical and the wave contribution 

factors are the same,
i iA B . As a result, sn equals 8 for annular plate. The relationships of wave 

contribution factors are
, ,i i n iA B A  , ( 1: 4)i n iC C i  . 

For the circular plate, setting
,3 ,4 ,3, ,n n nA A C and

,4nC to 0 and then wave functions (6) can be adopted 

to analyze the bulkheads and end plates in terms of stiffeners. 

2.3 Boundary and continuity conditions 

As shown in Fig. 1(a), the cylindrical shell has four displacement constrains ( , , , )u v w   and four 

force or moment constrains ( , , , )M S T N  at the cross section: 

0, 0, 0, 0, 0, 0, 0, 0u v w M S T N         (7) 

Combination of these eight simple boundary conditions can present any complex ones, that is to say 

the present method can be adopted to analyze the vibration characterist ics of cylindrical shell with 

arbitrary conditions. In the following analysis, the shell is closed by two end plates and the 

continuity conditions at the junctions of end plate and shell replace the boundary conditions. 

When the stiffened shell with bulkheads is divided into several segments, the continuity equations 

must be satisfied. Considering the circular plate is a special case of the annular plate, without loss of 

generality, Fig.2 shows the displacements, forces and moments at junction of the τth stiffener. 

 
Figure 2 – Junction displacements, forces and moments 

At the outer radius of the annular plate as shown in Fig. 2, the continuity conditions of 

displacements, forces and moments can be expressed as follows: 

, , , ,| , | , | , |L R L R L R L R

p r R p r R p r R p r Ru u w v v v w w u                          (9) 

, , , ,| 0, | 0, | 0, | 0L R L R R L R L

px r R pr r R p r R p r RN N N S S N T T N M M M                            (10) 

Subscript denotes the th  stiffener, and superscript L and R denote the left and right side of the 

τth stiffener, respectively. 

At the inner radius of the annular plate, the boundary of the annular plate is free: 

1 1 1 1, , , ,| 0, | 0, | 0, | 0px r r pr r r p r r p r rN N N M            (11) 

Eq. (11) is only appropriate for the annular plate and it will vanish for the circular plate. Since the 

junction of cylindrical shell and end plate is a special case, the continuity conditions can refer to Eq. 

(9) to (11) and the displacements and forces of cylindrical shell on left or right side vanish. 

2.4 Force excitation and frequency response function 

The structural response to a point harmonic force excitation can be calculated by considering the 

external force as part of the boundary conditions. A radial point force, as shown in Fig. 3, is located 

at one junction of stiffener and cylindrical shell. Assuming the point force located at
0 0( , )x  and the 

force can be described in terms of Dirac delta functions by 

0 0 0( ) ( ) j tF F x x e         (12) 

where F0 is the amplitude of external force. 

 
Figure 3 – Schematic diagram of stiffened shell with bulkheads 
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When the force is located at the junction of stiffener/bulkhead and cylindrical shell, the external 

force results in modification to the equilibrium of the second equation of Eq. (11), which becomes 

, |L R

pr r RS S N F       (13) 

When the direction of external force is axial direction or circumferential direction, the modification 

will occur in corresponding equilibrium in Eq. (11). Excluding the time harmonic dependency, 

multiplying the above equation by cos( )n and taking the integral from  to , Eq. (13) becomes 

, 0 0( ) | cos( )L R

pr r RS S N F n        (14) 

where 1/ 2 R  if 0n  and 1/ R  if 0n  . 

When the force is located at the cylindrical shell between two adjacent stiffeners, the segment of 

cylindrical shell needs to be divided into two segments and the continuity conditions are similar to 

Eq. (9), (10) and (14), but the displacements and forces of stiffener must vanish. 

Assembling all the boundary and continuity conditions in the matrix form Bx=F, where B is the 

matrix consisting of the expressions of displacements and forces in terms of corresponding wave 

contribution factors at junctions, x is the vector of the unknown wave contribution factors and F is 

the force vector with only one non-zero element corresponding to
0 0cos( )F n  . The steady state 

forced response of each circumferential mode number n is calculated by solving the system and the 

final response is the superposition of all different circumferential mode number n at the certain 

frequency. 

2.5 Far-Field Sound Pressure 

The radiating surface, without taking into account the scattering at the end plates, is divided into 

N elements and the far field sound pressure is the superposition of the acoustic pressures radiated 

from the discrete elements (11, 15): 

1 1( ) [ ] [ ]N Np r G v   (15) 

where r denotes the location of the field point, [ ]v is the normal velocity vector of all elements at 

particular frequency, [ ]G is the acoustic transfer vector (ATV) and
iG , the ith element of matrix [ ]G , 

represents contribution of the corresponding element to the observation field point when the ith 

element is the only element vibrating with unit speed and the others are at rest. The ATV depends on 

the considered frequency, the geometry, acoustical parameters of fluid and the position of the 

observation point. 

As N, the total number of discrete surface elements, is large enough, the elements can be treated 

as rigid piston with cylindrical baffle and the far field acoustic pressure radiated from the piston on 

the cylindrical baffle is (16)
 

1 1
0 0 ( cos ) ( )0 0

0 02 (1) '

0

2 ( ) ( )
( , , ) ( cos )

sin ( cos )

m
f f jk r L jm

m m

c L j J m
p r J kL e e

r H kL

  
  

  
  


 




   (16) 

where
02L and

02 are the axial length and circumferential angle of the piston,
1L is the axial distance 

between the center of the piston and the origin, and
1 is the azimuth angle of the center of the piston. 

The local coordinate system of the piston is spherical coordinate system ( , , )r   , and the origin of the 

local coordinate system is the intersection of the axis of cylindrical baffle and the perpendicular 

bisector of the piston, such as
1O . ,r  and can be obtained after the location of field point is known. 

All the parameters are shown in Fig. 4. 

 
Figure 4 – Cylindrical baffle and the corresponding pistion 

app:ds:spherical
app:ds:coordinate
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Once the elements of [G] are calculated by using the Eq. (16) and the velocity are obtained by 

adopting WBM, the radiated pressure can be easily obtained though Eq. (15). 

3. NUMERICAL RESULTS AND DISCUSSION 

The vibration and acoustic responses due to point force are presented for a ring-stiffened cylinder 

of radius R=3.5m, hull thickness h=0.032m, length L=36m, two evenly spaced bulkheads of thickness 

hp=0.032m, and end plate thickness he=0.032m. The internal stiffeners with rectangular cross-section 

of 0.025×0.25m are equally spaced by b=0.6m. The material properties for hull, bulkheads and 

stiffeners are the same, density ρ=7800kg/m
3
, Poisson’s ratio υ=0.3 and Young’s modulus 

E=2.1×10
11

N/m
2
. The structure damping is introduced using a complex Young’s modulus E=E(1-jη), 

where η=0.01 is the structure damping. The location of point force 
0 0( , )x  is (15, 90 )  , as shown in 

Fig.3. The location of far field pressure point is (18,0 ,1000) in cylindrical coordinate system. 

For validity of present method, a finite element (FE) model is developed using Ansys for 

fluid-loaded response and boundary element (BE) model is developed adopting Sysnoise for far field 

acoustic pressure. In the FE model, the structure, corresponding to a finite cylindrical shell closed by 

two end plates and two internal bulkheads, are meshed with Shell 63 elements, and stiffeners are 

meshed with Beam 188 elements. Fluid 30 and Fluid 130 elements are used to simulate the fluid and 

absorbing boundary around the fluid domain. 

3.1 Convergence and validity 

The structural response, at particular frequency, is the superposition of the circumferential mode 

number n, from 0 to infinite, which means numerical calculation need to be truncated. In order to 

ensure the convergence of results from WBM, Fig. 5 shows the vibration response results of different 

truncation orders of n. It is observed the results of different truncated orders are excellent identical 

and the highest order of truncated circumferential mode is 25 in the following analysis. 
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(a) Radial velocity at the driving point            (b) Mean square velocity 

Figure 5 – Convergence analysis of results of WBM 

Sec.2.5 discusses the far field response obtained using ERSM, which need dividing the  vibrating 

surface into small elements as many as possible. On the other hand, the computation efficiency 

decreases rapidly as the number of elements becomes large. Three different meshes, 48×60, 48×120 

and 64×120 (circumferential direction and axial direction, respectively) , are used to analyze the 

convergence of ERSM and they are named Mesh1, Mesh2 and Mesh3, respectively. Fig. 6 compares 

the predicting results of three kinds of meshes and it is observed the curves are identical. As a result, 

Mesh2, which achieves high computation efficiency and adequate converged results, is adopted in 

the following analysis. 

0 20 40 60 80 100

-40

-20

0

20

40

S
o

u
n

d
 p

re
ss

u
re

 (
d

B
 r

e=
1

0
-6

P
a

)

Frequency (Hz)

 Mesh1

 Mesh2

 Mesh3

 
Figure 6 – Acoustic response calculated by three different meshes 

Fig.7 compares the structural response calculated by the WBM and FEM. At low frequencies, a 

good agreement is observed between the results of two methods except for the amplitude of a few 
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peaks, 33Hz and 42Hz. Taking the step of excitation frequency and the effect of structure damping 

on structural response into account, the differences may come from the structure damping and 

become unobvious if the step is small enough. Although the discrepancies become more obvious at 

higher frequencies, such as the shift of frequencies of peaks, the amplitude of the peaks does not 

shift significantly. The differences are due to the approximate solutions for the external fluid loading, 

using the pressure of infinite model to analyze the finite one,  and its influence becomes more 

important as frequency increases. Except for those slight discrepancies, a good match between WBM 

and FEM is obtained, thus confirming the analytic model of WBM. 
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(a) Radial velocity at the driving point            (b) Mean square velocity 

Figure 7 – Comparison of structue response of different methods 

Fig. 8 shows the far field sound pressure of different methods. WBM and FEM denote the 

vibration response is obtained from analytical and computational solution, respectively. ERSM and 

BEM represent the ATV is calculated by analytical solutions and by means of the Sysnoise, 

respectively. Comparing the results of the WBM/ERSM and WBM/BEM, a good agreement is 

observed except for the range from 35Hz to 50Hz, and it can be concluded ERSM is an accuracy 

method calculating ATV of far field point. Comparing the curves of WBM/ERSM and FEM/BEM, 

the former of which is the analytical method of present paper and the latter of which is the 

computational method, it reveals the first peaks of two methods agree well and the differences 

become obvious as frequency increases but the trend is similar. Taking the results in Fig.7 into 

account, the differences are mainly attributed to the differences in vibration responses. In general, 

the present method (WBM/ERSM) is an accurate method in the analysis of vibration and acoustic 

responses. 
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Figure 8 – Comparison of far field sound pressure of different methods 

3.2 Effect of the bulkheads 

Fig.9 presents the structural and acoustic responses with one, two or five evenly spaced 

bulkheads. Significant influence of the number of bulkheads on the structural response is observed 

from Fig. 9(a) and 9(b). As the number of bulkheads increases, the amplitude of velocity with 5 

bulkheads, except for some peaks, is obvious lower than the other cases, which is attributed to added 

stiffness of the increased number of bulkheads. The reason why the amplitudes of some peaks with 5 

bulkheads are larger is that the driving point is located at the peaks of mode shape when the axial 

mode number is odd. Meanwhile, the location of external force with 5 bulkheads is at the nodal line 

when axial mode number is even and the corresponding modes cannot be excited, which results in 

the resonant peaks are fewer. Fig. 9(c) shows the far field pressure and it is observed the peaks shift 

to higher frequencies only at low frequency range as the number of bulkheads increases, but the 

amplitudes does not shift significantly, which indicates the added stiffness does not affect the 

transmission of sound into the acoustic field although it reduces amplitude of structural response 

obviously. 
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(a) Radial velocity at the driving point            (b) Mean square velocity 
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(c) Far field sound pressure 

Figure 9 – Effect of the number of bulkheads on the structural and acoustic responses 

Fig.10 shows the responses of the three different distributions of bulkheads. Distribution 1 

represents the two bulkheads located at 10.8m and 25.2m, Distribution 2 represents the bulkheads 

evenly spaced, namely located at 12m and 24m, Distribution 3 represents the bulkheads located at 

13.2m and 22.8m. Since the differences of the three distributions are not obvious compared with the 

length of the compartment, the main effect of the distribution of bulkheads is the peaks shift to 

higher frequencies as the distance of the two bulkheads decreases while the amplitudes of resonant 

peaks are at the same levels. 
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(a) Radial velocity at the driving point            (b) Mean square velocity 
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(c) Far field sound pressure 

Figure 10 – Effect of distributions of bulkheads on the structural and acoustic responses 

The influence of bulkhead thickness on the structural and acoustic responses is presented in 

Fig.11. It is observed the bulkhead thikness has negligble influence on the vibration and acoustic 

responses. 
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(a) Radial velocity at the driving point            (b) Mean square velocity 
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(c) Far field sound pressure 

Figure 11 – Effect of bulkhead thickness on the structural and acoustic responses 

3.3 Effect of the point force excitation 

Fig.12 presents the structure and acoustic response as driving point located at three different 

points. Case1, Case2 and Case3 denote the axial coordinate of the driving point is 9m, 15m and 18m, 

respectively. Since the hull is the periodic structure and the locations of forces in Case1 and Case2 

are similar corresponding to the bulkhead, the structural and acoustic responses of those two cases 

agree well. For Case3, the amplitudes of structural response and the sound pressure are obvious 

larger than others two cases, which is due to the fact the distance between driving point and the 

bulkhead is the largest. Furthermore, the peaks of structure response in Case3 are fewer than others, 

which is attributed to the driving point located at the nodal line when the axial mode is even and the 

corresponding modes cannot be excited. 
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(a) Radial velocity at the driving point            (b) Mean square velocity 
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(c) Far field sound pressure 

Figure 12 – Effect of driving point on the structural and acoustic responses 

4. CONCLUSIONS 

An analytic method to predict the vibration and acoustic responses of cylindrical shell with 
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bulkheads based on wave based method (WBM) has been presented. The stiffened cylindrical shell 

with bulkheads is divided into different substructures, such as cylindrical shells, annular plates and 

circular plates. The motion of cylindrical shell is described by Donnell-Mushrari theory and the 

equations of motion of stiffeners are described by equations of annular plate in contrast to the 

equations of motion of beam. The dynamic field variables in each substructure are expanded as wave 

functions. Numerical results show good agreement between analytical and computational results. 

The influence of various complicating factors on the vibration and acoustic responses to a radial 

harmonic excitation is discussed. The variation of bulkhead thickness is shown to have negligible 

influence. Although the amplitude of structure response is significantly reduced by increasing the 

number of bulkhead, the far field sound pressure is not affected excepting the frequencies of peaks 

shift to higher frequencies at low frequency range. The distribution of bulkheads mainly affects the 

resonant frequencies and hardly affects the amplitudes when the length of compartment does not 

shift obviously. As the locations of different point forces are similar corresponding to the bulkhead 

in periodic cylindrical shell, the structural and acoustic responses are similar. Furthermore, the larger 

the distance of driving point and the nearest bulkhead is, the greater the amplitudes of the structural 

and acoustic responses are. 
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