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ABSTRACT 
The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on 
the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and 
comparison with measurements. Numerical methods that can simulate sound fields in fluids including losses 
are particularly interesting whenever small cavities and narrow passages are present, as is the case with many 
acoustic devices such as transducers and small audio appliances. 
The present paper describes current work aimed at improving the method by addressing some specific issues 
related with mesh definition, geometrical singularities and treatment of closed cavities. These issues are 
specific of the BEM with losses. Using examples, some strategies are presented that can alleviate 
shortcomings and improve performance. 
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1. INTRODUCTION 
The issue of viscous and thermal losses in small domains has been a matter of attention in the 

literature in recent years. Lately the implementation of such losses in numerical methods has become 
a reality and is bringing new understanding of the acoustics of small devices such as microphones, 
couplers, hearing aids or mobile phones.[1,2] 

Theory on losses is based on the Navier-Stokes set of equations where linearity and no flow is 
assumed, but losses are kept.[3,4] Direct implementation of the equations using the Finite Element 
Method (FEM) has been proposed and later implemented in a commercial software package.[5,6]  

By means of Kirchhoff’s dispersion equation it is possible to separate the lossy acoustic sound field 
into three modal wave fields: viscous, thermal and acoustic.[3,7] These three modes are coupled at the 
domain boundary. A Boundary Element Method (BEM) implementation makes use of this theoretical 
framework by calculating the three modes and building the solution through coupling of the viscous 
and thermal boundary conditions.[8,9,10,11]. 

This paper examines a few particular aspects of the BEM implementation of losses related with its 
efficiency, performance and practical use. As an example, an axisymmetrical model of a Brüel & Kjær 
¼ inch type 4938 condenser microphone is presented in section 2 and used in the rest of the paper. In 
section 3, the numerical difficulty of the zero frequency cavity mode arising in BEM is examined and 
a solution proposed. The meshing of critical parts of the domain boundary, in particular sharp corners 
is treated in section 4. Section 5 explains some efficiency improvements in the way the BEM handles 
the viscous and thermal modes. 

2. TEST CASE 
The B&K 4938 microphone is a pressure-field measurement condenser microphone with no holes 

in the backplate, therefore suitable for axisymmetrical modeling. Only the internal cavity and the 
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diaphragm are modeled, while the external excitation used is a uniform sound pressure of 1 Pa 
amplitude acting on the membrane. More complicated models already exist (i.e. three-dimensional, 
external medium), but this simplification is however sufficient and convenient for the purpose of the 
paper. The microphone external appearance and the internal geometry are depicted in figure 1. 

Figure 1 – Appearance and internal geometry generator of the B&K 4938 microphone. 
 
The dimensions are: Rm= 2 mm, Hm= 19.5 µm, BPrad=1.75 mm, Rb1= 1.3 mm, Rb2= 1.8 mm, 

Hb1= 0.5 mm, Hb2= 0.75 mm, Hb3= 1.5 mm. The membrane is modeled using one-dimensional FEM, 
and is coupled to the BEM model with losses of the internal cavity. Rm is the radius of the membrane, 
which covers the top of the geometry and is fixed at the rim. The membrane tension is 3128 N/m, its 
density 8300 kg/m3 and the thickness 6,95 µm. The very thin gap (Hm) is where most of the losses 
occur and act on the membrane as a damping force. The rim of the backplate, of radius BPrad, is the 
only connection between the gap and the back cavity. 

The microphone sensitivity is proportional to the average displacement of the membrane. The 
sensitivity can be measured under equivalent conditions using an electrostatic actuator, but the 
manufacturing tolerances give rise an important margin of variation from unit to unit.  

3. NUMERICAL DIFFICULTY AT LOW FREQUENCY 
The direct collocation BEM implementation used in the calculations poses a difficulty when 

dealing with hard-walled closed interior domains. Such cavities have an eigenmode at zero frequency 
along with the eigenmodes dictated by the cavity’s geometry and dimensions. In BEM, the calculation 
at frequencies close to eigenmodes shows as a high condition number of the coefficient matrix 
associated with node pressures, the A matrix following the notation in reference [11]. See also 
reference [12] for a practical use of the condition numbers of BEM coefficient matrices.  

Figure 2 shows the sensitivity of the microphone calculated with a totally hard interior boundary. It 
is compared with a result where one of the backcavity nodes is given a non-zero (0.005) admittance. 
The existence of some admittance moderates the condition number of the coefficient matrix at low 
frequency and allows a meaningful solution to be obtained. 
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Figure 2 –Normalized sensitivity of the B&K 4938 microphone. Black curves, higher and lower limits 
of a large set of actuator measurements; red “x”, BEM result with hard-walled back cavity; blue “+”, 

BEM result with one node in the back cavity with non-zero admittance. 
 
Figure 3 shows the condition numbers of the A coefficient matrix in a sphere with a 2 mm radius 

(the same as the B&K 4938 example) and 20 generator elements. The high condition number indicates 
that the solution is more sensitive to small variations of pressure and velocity on the boundary, but it 
does not usually prevent correctly solving in the lossless case. However, in complicated setups with 
coupling and losses, as is the case of the B&K 4938 microphone, there are further approximations, 
more variables and therefore machine errors build up; the effect can trigger calculation errors at low 
frequencies.  

A remedy can be the introduction of some small impedance somewhere on the setup boundary. This 
would reduce the effect of the f=0 eigenmode and render more stable calculations. Figure 3 also 
includes a condition number curve plot where one of the nodes on the sphere’s interior is given an 
acoustic admittance of 0.005; the coefficient matrix becomes then A+ikZ0BY, with B the coefficient 
matrix associated with normal velocity, k the wavenumber, Z0 the characteristic impedance of air and 
Y the boundary admittances, following again reference [11].  

Figure 4 shows the effect on the calculation of the internal pressure in the spherical cavity, if it is 
excited by a moving cap of 20 degrees radius at the top, and calculated at the opposite side of the cavity. 
The calculation and impedance points are indicated with ‘*’ at the bottom and side respectively of the 
sketch in figure 4.  

The theoretical lumped parameter pressure in the sphere can be calculated as the product of the 
volume velocity of the moving cap (normal velocity times the area) times the acoustic impedance of 
the sphere (ρc/iωV). It is plotted in figure 4 as well. 

Introducing non-zero admittance obviously changes the setup to some degree, as can be seen in the 
sphere case in figure 4. In the B&K microphone modeled in this paper, the prescribed admittance on 
one backcavity node helps achieving a meaningful result, without significantly modifying the 
expected sensitivity result. 
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Figure 3 – Calculations on a hollow sphere. Condition numbers of the A coefficient matrix with hard 
boundary (blue) and one node with non-zero admittance (red). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Calculations on a hollow sphere. Pressure magnitude at the interior: black, lumped 

parameter result; blue, hard boundary; and red, one node with non-zero admittance. 
 
 

4. MODELING OF THE SHARP CORNER AT THE RIM 
In lossless BEM, the mesh density is usually set to have a minimum of six nodes per wavelength. 

This rule of thumb ensures that sound field variations can be followed, since those variations will 
occur within shorter distances, the higher the frequency.  

Viscous and thermal losses have a short range away from the boundaries and can be considered as 
diffusion processes combined with wave propagation. The effects are local and depend mostly on the 
local boundary shape. Both in lossy and lossless models, sharp corners are geometrical singularities 
that cause significant variations of the sound field in their vicinity, posing a modeling challenge. 
[13,14]  

Considering losses means an extra constraint on the boundary shape: the surface must be C1 
differentiable.[7] In the BEM with losses, the non-slip condition for the viscosity mode is 
implemented using a second tangential derivative. A sharp corner is therefore a violation of the theory 

* 

* 
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of losses on which the numerical models are based. Even with no losses, the corner results in a 
discoutinuity of the normal velocity. Some authors offer remedies for this situation, but only in the 
lossless case. [15,16] 

In lossless acoustics, corner effects are usually ignored with no significant consequences. There are 
however cases where losses must be considered and where the behavior near a corner does affect the 
overall result. The example in this paper is one of such cases. It contains a number of sharp corners, but 
the calculations show that the sound field near the corner situated at the rim of the backplate (ρ=1.75, 
z=0 in figure 1) has an influence on the overall performance and must be properly modeled. Figure 5 
shows the particle velocity in the region around this corner, calculated using the BEM with losses. 
These are instantaneous values; the velocity vectors change direction and magnitude during a wave 
period.  

 

 
Figure 5 – Particle velocity around the backplate rim corner of the B&K 4938 microphone. 

Left, 0 deg. phase; right, 90 deg. phase. 
 
The modeling of a corner can be dealt with by a local increase of mesh density. This is usually done 

in FEM with losses. In BEM, the corner can be finished with a curved boundary section with a short 
curvature radius. The corner has been rounded in the case of figure 5; other curvature radii and mesh 
densities have been tried, showing that the meshing effort can be concentrated to the region on the 
corner and its immediate vicinity. The rest of the mesh can be meshed with a much rougher mesh. In 
the limit of zero curvature, the corner will tend towards a geometrical singularity.  

Figures 6 and 7 show the meshed generators and the sensitivity results for the B&K 4938 
microphone calculated with a sharp corner and with a rounded corner with extra elements; the 
differences are obvious. The mesh with rounded corner has 111 elements and 223 nodes, while the 
regular mesh has 135 elements and 271 nodes, that is, the best result is actually obtained with less 
elements and nodes, but concentrated on the troublesome area. 
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Figure 6 –Two BEM generator meshes of the B&K 4938 microphone. Upper plot, mesh with rounded 
rim corner, 111 quadratic elements; lower plot, mesh with no rounding, 135 quadratic elements. 
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Figure 7 –Sensitivity of the B&K 4938 microphone. Red ‘x’, sharp rim corner;  
blue ‘+’, smoothed rim corner. The meshes used are those of figure 6. 

 

5. EFFICIENCY IMPROVEMENTS 
 
The BEM coefficient matrices contain integrals of two kernels that essentially (that is, besides 

element shape functions and the jacobian of the transformation from global to local coordinates) 
contain the Green’s function G(R)=exp(-jkR)/(4πR) and its normal derivative ∂G(R)/∂n. Here R is the 
distance from the running integration point to the collocation point. In an axisymmetric 
implementation the surface intergral is carried out as an integral along the generator combined with a 
circumferential integral.[8]  

To speed up calculations, two improvements of the implementation can be made: 
o Firstly, it is not necessary to model the small gap between the diaphragm and the backplate 

using elements that are comparable with the gap thickness. Much larger elements can be 
used if the near singular behavior is dealt with using a local refinement of the numerical 
integration – rather than a refinement of the mesh.[17]  

o Secondly, viscous and thermal modes are calculated with formally the same kernel as in the 
lossless case, but using complex wavenumbers. The imaginary part of the complex 
wavenumber leads to an exponential decay reflecting the fact that the viscous and thermal 
modes are local, as opposed to the acoustic mode, which is global. Hence, a simple check of 
the distance between the element and the collocation point can be carried out initially and 
used to avoid calculating contributions that are efficiently zero due to the exponential 
decay.  

For collocation points close to the element, the integral refinement ensures that both the 
near-singularity and the fast variation of the exponential decay are handled accurately and efficiently. 
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6. CONCLUSIONS 
Several implementation issues concerning the use of the BEM in acoustics with viscous and 

thermal losses have been examined in this paper. A particularly challenging test case has been used as 
an example when dealing with such issues, the Brüel & Kjær microphone type 4938. 

The effect of a totally rigid interior cavity gives rise to errors in the calculation at low frequencies. 
This effect is reduced by introducing some impedance in the microphone’s back cavity, rendering 
meaningful results. 

The special treatment of particularly sensitive areas of the setup, where losses and geometrical 
singularities are present, with finer meshes and rounded corners can give good results with no overall 
increase of degrees of freedom. 

The efficiency of the calculation can be greatly improved by considering details such as the 
treatment of near-singular kernels and complex wavenumbers. 
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