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ABSTRACT 

This paper describes a new measurement technique that allows the model amplitude distribution to be 

determined in ducts with mean flow and reflection based only measurements of the two-point coherence 

made at the duct wall. The technique is primarily applicable to broadband sound field in the high frequency 

limit and whose mode amplitudes are incoherent. The technique makes the assumption that the relative mode 

amplitude distribution is independent of frequency. 

 

Keywords: Duct acoustics, Measurement, Modal analysis. 

 

1. INTRODUCTION 

The broadband noise due to fan in a modern turbofan aero engine is one of the dominant noise sources 
contributing to community noise annoyance, particularly at approach. A detailed understanding of its 
noise mechanism, an assessment of its sound power transmission, radiation to the far field, and the 
design of an effective liner to attenuate this noise source, all require detailed measurements of its mode 
amplitudes. Unlike the noise at the blade passing frequency, which typically comprises just a few 
dominant modes in accordance with the Tyler Sofrin mode selection rule, broadband noise generally 
comprises all possible propagating modes.  The difficulty with the measurement of their mode 
amplitudes is that, in general as many microphones are needed to measure the sound field as there is 
numbers of modes. At frequencies close to the blade passing frequency, for example, the number of 
modes can readily exceed one hundred, which renders the simultaneous measurement unrealistic. 
Approaches have been followed to limit the number of microphones by the use of, for example, 
rotating rakes of microphone arrays where a limited number of microphones are slowly rotated or 
traversed though the in-duct sound field. Modal amplitudes may then be deduced though the inversion 
of the cross spectral pressure matrix. Very often, however, the matrix to be inverted can become 
ill-conditioned leading to erroneous mode amplitude estimates. 
 
A pragmatic solution to determining the mode amplitude distribution in ducts has been proposed by 
Lowis et aln in which a single axial array of microphones at the duct wall are used as a beamformer to 
estimate the in-duct noise directivity. Rather than providing information about the mode amplitude for 
the different mode orders (m,n), the technique provides information about the distribution of mode 
amplitudes versus in-duct propagation angle. For the intended applications listed above, this limitation 
presents no difficulty as it has long been recognized that modes with the propagation angles possess 
near identical transmission and radiation characteristics1. 

2. MODAL TRANSMISSION 

Consider a hard-walled cylindrical duct of finite-length, as sketched in Fig 1 below, containing an axial uniform 
mean flow moving in the positive x direction with flow speed cM (M > 0), where c is the sound speed and M is the 
mean flow Mach number. A point on the duct cross section is represented by y = (r,) and x denotes the axial 
distance along the duct relative to some arbitrary origin. Two microphones mounted flush to the duct wall, 
separated axially by a distance x, are used to detect the acoustic pressure. The objective here is to deduce the 
distribution of mode amplitudes in the duct using the acoustic pressure information at the two microphones. 
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Figure 1. Semi-infinite, hard walled unflanged circular duct with associated co-ordinate system. Two 
microphones mounted flush to the duct wall, separated axially by a distance x, are used to detect the 
acoustic pressure. 

 

The sound field p(x,y)  in the duct satisfies the convected homogeneous wave equation,  
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 0,0,cM  in the (x,y) coordinate system and c is the sound speed in the quiescent medium. Above its cutoff 

frequency, at a single frequency , a single mode of pressure amplitude mnA  is described by  
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where the superscript ‘+; refers to modes propagating in the direction of flow and ‘-‘ to modes propagating 

in the opposite direction to the flow. Equation (2) in Eq. (1) gives 
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where  22 1 M  and mn are a set of eigenvalues that are characteristic of the duct cross section such 
that the corresponding mode shape functions mn, defined by     022  ymnmn , also satisfy the 
duct-wall boundary conditions and the normalization condition     1
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A
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, which we shall call the cut-on ratio, is central in what follows, and takes values between 0  
precisely at the modal cutoff frequency   2

1
21
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 Mcmnmn  , and tends to 1  as mn / , 
corresponding to modes well above cuton. Modes propagating in the direction of the flow are represented 
by 0  while modes propagating in the opposite direction (against the flow) are represented by, 0 .  

 

The in-duct sound field at any position in the duct cross section y = (r,), axial position x, and frequency , 
can be expressed as the sum of modal components propagating in the direction of flow 

mnp , and modes 
propagating opposite to the direction of flow 

mnp ,  
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where (m,n) are the usual circumferential and radial mode indices2. 
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3. RELATIONSHIP BETWEEN MODE AMPLITUDE DISTRIBUTION AND  

COHERENCE 

 

The acoustic pressure cross spectrum between two points separated axially along the duct wall 
 ,ara y , at axial distances x1 and x1 + x, may written as 
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where E{} denotes the expectation and the acoustic pressures refer to Fourier Transforms of the pressure 
time series taken over a time duration  T. For incoherent excitation of the sound field we treat the mode 
amplitudes as uncorrelated random variables so that   0* nmmn AAE . We further assume that the same 
mode propagating in opposite directions are also uncorrelated such that,      0

*
  mnmn AAE . 

Substituting Eqs (2) and (4) into Eqs (5) and invoking the uncorrelated mode assumptions above leads to, 
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Work by Rice3, and more recent work by Joseph et al4, have shown that there are a physically important 
class of source distributions for which the relative mode amplitude distribution is independent of frequency 
and only a function of the cut off ratio mn  (equivalently, mode propagation angle1, see equation (25) 
below).  Well known examples include a uniform distribution of monopole sources, axial dipole sources 
and equal energy per mode4. In these, and many other source distributions, we may write, 
 

     mnmn aSAE  2
2


 









     (7) 

where  S  is the frequency-dependent source strength with dimensions of pressure squared per unit 
frequency and  mna 2

  specifies the relative distribution of non-dimensional mean square mode 
amplitudes, which depends only on mn . A list of some physically important examples are listed in the 
Appendix. The assumption of the separability of  
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mnAE  into a purely frequency–dependent term 
 S and a mode distribution term  mna 2

  (which controls the spatial variation of the sound field) is 
central to the validity of the technique. The split between the two terms in Eq. (7) is essentially arbitrary. 
For reasons that will become clear below, we define  mna 2

  with the normalization property, 
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We now denote the amplitude of waves propagating against the direction of flow (i.e., reflected modes in 

this case) by negative argument  so that  
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In the high frequency limit (ka = a/c > 10 has been found to be sufficient, where a is the duct radius), we 
may treat  2a  as a continuous variable so that the discrete summation over  mna 2  in Eq. (6) may be 
replaced by an integration over . The normalization condition of Eq. (8) may therefore be written as  
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where n() the modal density function introduced to take account the distribution of modes across their 

range of - values, defined by, 
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where N() is the number of modes with ‘’ values of  between -1 and  and N is the total number of 

propagating modes at frequency ka, i.e.,  
1

1
 dN . Rice has shown that in a cylindrical duct with 

uniform mean flow, the total number of propagating modes N takes the high-frequency limiting value3, 

    /,/
2
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Following Rice1, and re-expressed in terms of cuton ratio  by Joseph et al4,5, the high-ka asymptotic 
density function n, is given by,  

   n        (13) 

 

Note that Eq. (13) differs by a factor of ½ from the expression originally presented by Joseph et al4, which 

assumes a distribution a modes propagating from one direction only. Equation (13) indicates a scarcity of 

modes that are just cut-on ( 0 ) compared with a higher population of modes that are well cut on, 

( 1 ). 

Simplifications to Eq. (6) for the pressure cross spectrum at the duct wall are obtained by replacing  y
2
mn  

by its average value at the duct wall4, averaged over all values of mode indices m and n,  
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Taking the average incurs greatest error for modes with the largest m values whose values of  y
2
mn  are 

concentrated at the duct wall. These modes are comparatively scarce, however (with m = 0 having the 

largest number of radial modes and hence being most common), and hence the approximation of Eq. (14) 

introduces negligible error compared with the exact calculation of Eq. (6). Substituting Eq. (7) for 

 
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mnA , Eq. (3a) for kmn, and taking the high frequency limit in the sense of Eq. (10), leads to an integral 

expression for the pressure cross spectrum  xS a ,,12 y  between two microphones separated axially by a 

distance x at the duct wall  ,aa y  involving only the cutoff ratio and the frequency-dependent source 

strength,  
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which is a function only of the non-dimensional frequency, ̂  

 

 2/ˆ  cx , (16) 

 

Note that the source term  ̂SS   has also been written as a function of ̂  which is permissible since S 

is a source term and therefore unrelated to x and so there is no difficulty in non-dimensionalising the 

source frequency  with respect to this arbitrary distance. A consequence of making the separability 

assumption of Eq. (7) is that the cross spectrum is only a function of the non-dimensional frequency, ̂ . 

Thus, cross spectra measured at the duct wall for different separation distances x, plotted against ̂ , 

should collapse provided that this separability assumption is met. This property therefore provides a simple 

test of the validity of Eq. (7). In practice, however, the coherence measurement will be affected by 

non-acoustic pressure contributions from flow noise at the microphones. In practice, therefore, steps should 

be taken to minimize contamination by flow noise by, for example, recessing the miscrophones into the 

duct wall. 
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Interpretation of S. 
Putting 0x  in Eq (6) yields the pressure Power Spectral Density  y,11 S  at any point over the duct 

cross section y. Averaging the result over the duct cross section area A and taking the high frequency limit 

yields,   
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Noting the normalization property of the mode shape functions,     
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amplitude normalization property of Eq. (10), Eq. (17) reduces to, 
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The source strength  ̂S  therefore has the interpretation as the high frequency noise pressure spectrum 

averaged over the duct cross sectional area, per mode. Joseph et al4 has shown that, in the high frequency 

limit, the pressure PSD averaged over the duct cross section,  ̂S , is half the pressure Power Spectral 

Density (PSD) measured at the duct wall  aS y,ˆ
11  , i.e.,  
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Substituting Eq. (19) into (15) leads to,  
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In Eq. (20), and all future results, the dependence on ya is dropped since it is now understood that all 

measurements are made at the duct wall. Finally we make the approximation that     ˆˆ
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221111 SSS  , since x is usually very small (typically a few centimeters), and set the 

upper limit of integration to infinity (since   02 a  for 1   corresponding to cutoff modes). The 

final result is, 
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Equation (21) represents a Fourier Transform relationship between the  – weighted normalized mode 

amplitude distribution function  2a  and the complex coherence function   ˆ
12 , 

 

    
   




ˆˆ

ˆ
ˆ

2211

12
12

SS

S
   (   1ˆ0

2

12   ) (22) 

 

The mean square mode amplitude distribution, with the normalization property of Eq (8), may therefore be 

readily deduced from the inverse Fourier Transform of the complex coherence function weighted by ̂eiM . 
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Equation (23) is the main result of this paper. It suggest that the normalized mode amplitude distribution 

may in principle be deduced using just two microphones for any incoherent multi-mode sound field whose 

cross spectra collapses on the non-dimensional frequency 2/ˆ  cx . The phase factor ̂eiM  serves as a 

Lorentz transformation into the reference frame moving with the flow such that the amplitude distribution 
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for right and left-traveling propagating modes is now symmetric in , lying in the range 11   . 

 

In this section we validate the principles set out above by a number of numerical examples to illustrate the 
effectiveness of the technique in deducing, based only on the complex coherence measurement at the duct 
wall, the mode amplitude distribution and transmitted sound power for incident and reflected modes, and 
the far field pressure directivity. We consider the idealized case of a duct in which all the modes 
propagating towards the end of the duct contain equal sound power. The normalized mode amplitude 
distribution is obtained by setting W0 = 1 in Eq. (28) and normalizing according to Eq. (11b), 
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In a hard walled cylindrical duct the mode shape function are of the form     mnrmmn rkJr

mn
 / , where 

mJ  are Bessel functions of the 1st kind or order m, ak
mnr  is the nth stationary value of mJ  and mn  are 

constants chosen to satisfy the normalisation condition presented above. Modal pressure reflection 
coefficients of the form    2/exp  R  are assumed in the simulations, so that       222

  aRa , 
where  specifies the rate at which the reflection coefficient diminished as the modes is excited well above 
cut off. This reflection coefficient model is consistent with other more accurate models and is designed to 
ensure that modes at cutoff,  = 0, are perfectly reflected, with the reflection coefficient reducing as the 
modes become increasing cuton as frequency is increased1. 
 
Special cases; zero Mach number, arbitrary reflection 
We first consider the case of M = 0 since it allows analytic expression to be derived and compared against 
exact numerical predictions. For the case of Equal energy per Mode, the mode amplitude distribution may 
be obtained by setting the sound power in each mode equal to unity,   10  WWmn   in Eq. (28), 
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where N is the factor designed to ensure that  2a  is correctly normalized according to Eq. (10) and 
equals,     /1  eN . The complex coherence function is obtained from substituting Eqs (37) into 
(21) to give  
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Figures 2a and 2b show a comparison of the coherence magnitude and phase respectively, evaluated at the 
duct wall for an equal energy per mode sound field computed from the exact modal summation of Eqs. (6 
and 22) (blue curve) with the analytic expression of Eq. (38) (black dashed curve). Comparison are shown 
for the four reflection factors,  = 0, 1, 2 and 5. Note that the curves have been separated for ease of 
readability. 
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Figure 2. Comparison of ‘exact’ and theoretical coherence function magnitude and phase for M = 0 at 
different levels of reflectivity, = 0, 1, 2 and 5. Note that the curves have been separated for ease of 
viewing. 
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Oscillations in the exact calculation arise from the behavior of the spectra at the modal cuton frequencies. 
Here the pressure amplitude tends to infinity as the cutoff frequency is approached. As the modal 
reflectivity is increased (by reducing ) the coherence magnitude and phase both exhibit greater variability.  
 
Limiting cases case of the coherence function may be obtained for the case of perfect modal reflectivity  
=0, and when the reflectivity is zero, i.e., the duct may be assumed to infinite. In the latter case, putting 

  into Eq. (38) yields 
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which is in close agreeement with the exact calculation shown in figures 2a and 2b. The ducted sound field 
may now be regarded as a one-sided (or hemi-diffuse sound field). The phase delay between the two 
microphones which varies with frequency as cx /

2
1  , i.e., precisely half the rate of a purely plane wave. 

Precisely this behavior is observed in figure 2a and b for the case of least reflectivity,  = 5. When all 
modes are perfectly reflected at the end of the duct, 0 ,  and Eq. (38) tends to 
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In this case, where each incident has equal sound power and is perfectly reflected incoherently, the 
coherence function is identical to that of a diffuse sound field in which energy is arriving from all angles 
equally.  Clearly, therefore, there is no phase variation between the two microphones, as shown in figure 
2b, where 2 phase jumps can be observed due to unwrapping issues.  

 

Mode amplitude distribution 

Figure 3 shows a comparison of the exact mean square mode amplitude distribution versus  of Eq. (37) 
with that deduced by inversion of the complex coherence functions plotted in figures 2 by the use of Eq. 
(23). 
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Figure 3. Comparison of the exact (blue curves) and inverted mode amplitude distribution (red curves) for 
four reflectivity factors at M = 0. 

 

Agreement between the exact and inverted mode amplitude distribution is generally excellent except near 
the extreme value of  = 0, where the modes are well cuton, and 1 , corresponding to modes that are 
close to cutoff. Errors are particularly great for the very well cuton modes. This is likely to be due to the 
choice of ‘equal energy per mode’ model chosen for the simulation since the mode distribution becomes 
singular at  = 0, which clearly cannot be recovered from Eq. (23) using a numerical integration. Errors are 
also pronounced for the near-cutoff modes particularly for the case of least reflectivity arising from 
numerical errors in the evaluation of Eq. (23).  
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4. EXPERIMENTAL APPLICATION 

 

We now apply the mode amplitude measurement technique to some coherence data obtained in the bypass 
section of the Anecom fan rig at Germany, shown below in figure X. The mean flow Mach number was 
0.247. The microphones were mounted flush to the duct wall and no attempt was made to shield the 
microphones from the turbulent boundary layer at the duct wall.  

 

 
Figure 4. Schematic of the fan rig and measurement section in the bypass section 

 
 

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kx/²

 M
a
g
n
it
u
d
e
 C

o
h
e
re

n
c
e
 

1
2

 x=0.027m

 x=0.054m

 x=0.108m

 x=0.216m

 x=0.432m

 

50 100 150 200 250 300 350 400 450 500

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

kx/²

 P
h
a
s
e
 C

o
h
e
re

n
c
e
 

1
2
 (

ra
d
s
)  x=0.027m

 x=0.054m

 x=0.108m

 x=0.216m

 x=0.432m

 
Figure 5 a and b show the magnitude and phase of the measured coherence for the five separation distances, 
x = 0.027m, 0.054m, 0.108m, 0.218m, and 0.432m, plotted against normalized separation distance.  
 
 
 
The magnitude and phase of the coherence function are in reasonable agreement except for the two largest 
separation distances where the magnitude of the coherence is generally very small due to boundary layer 
noise. The corresponding inverted mode amplitude distribution function is shown below in figure 6. 
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Figure 6. Modal amplitude distribution versus cutoff ratio deduced from the complex coherence function 
measured in the bypass section of a fan rig for 5 different separation distances.  
 
As for the coherence estimates the mode amplitude estimates are reasonably consistent except for those 
obtained from the largest separation distances. 

 

5. CONCLUSIONS 

This paper has described a new method for determining the mode amplitude distribution in multi-mode 
broadband sound field in ducts in the presence of uniform mean flow and reflections. The novelty of the 
techniaue is that it requires only measurements of the complex coherence function made at the duct wall. The 
technique is valid in the high frequency limit and is restricted to cases where the relative mode amplitude 
distribution is independent of frequency.  
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