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ABSTRACT 
Experimental studies have shown that for short gaps (2 to 5 ms) loudness and threshold are higher than for 
uninterrupted noise. Other studies have also shown that the present integration models for loudness do not 
adequately account for short duration phenomena. Studies have instead shown that the multiple look 
approach is the applicable method for these short-term circumstances. However, present technologies (i.e. 
FFT) are not adequate to deal with short duration sounds across the entire frequency spectra. A compromised 
approach is taken here to account for the threshold phenomena in the presence of gaps while using an 
integration model. This approach is referred to as a threshold correction factor. 
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1. INTRODUCTION 
The ability to hear and discriminate sounds within our environment is a critical sensory mechanism 

that enables humans to communicate and to react to auditory stimuli.  Communication plays a critical 
role in the maintaining of social relationships as well as the ability to hear, react and analyse sounds 
within the environment. As such, it can be said that hearing ability is paramount to an individual’s 
ability to understand its surroundings and is a significant contribution to an overall quality of life. 

For engineering applications, the goal is often to find the source mechanisms of a sound in the hope 
of either attenuating the noise or to improve its quality from a perceptional perspective. A fundamental 
psychoacoustic metric used to achieve this is loudness, a model for which many other metrics rely on 
for the basis of their calculation algorithms. Loudness is said to be a metric, which closely matches the 
perceived intensity of a sound. 

Complex models are often needed for the estimation of loudness for real sounds. These models are 
divided into two fundamental types depending on the nature of the sound. These include loudness 
models for steady sounds, which do not change with time and more complex unsteady models used for 
the calculation of loudness of unsteady sounds. Several methods to calculate both categories of sounds 
can be found in the literature 

The focus of this work is on the more complex determination of loudness for unsteady sounds.  A 
generally accepted approach to the calculation of unsteady loudness use the method temporal or long 
term integration where the intensity of the unsteady signals are integrated over time. Psychoacoustic 
studies have found this method to be acceptable for sounds which do not change significantly over 
durations of approximately 100 ms or longer.  However, it has been known for many years, as given 
by Exner (5), that the absolute thresholds of sounds are strongly dependent upon duration and 
frequency. Experiments have shown that the perceived absolute thresholds are increased for sounds, 
which are short in duration or in the presence of gaps. The use of temporal integration methods cannot 
account for the short duration data, and therefore, cannot always be considered to be good predictors of 
loudness for all signal types.   

An alternative model of the human auditory system is called the multiple look approach. The 
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temporal weighting if they are provided with feedback or a hint of the signal. This reinforces the work 
performed by Moore (10). Also, a change in the spectral content in the middle of a sound, 
demonstrating the onset of a new event, is shown to be weighted more heavily. Thus, it was shown that 
listeners pay attention to salient events within sounds, phenomena not possible with simple integration 
but only supported by a multiple look approach. Pedersen concluded that temporal variation is made 
available in the sensory system to allow for overall judgement of the properties of sound, such as 
loudness, and, “this information is weighted and analyzed in complex ways, which is not adequately 
described as a simple summation process,” but can be explained by the multiple look theory (16). 

Much work has been done over the past 80 years or so in the development of loudness models. 
Progress has also been accomplished in the initial development of time varying loudness models using 
time integration techniques. While this approach has shown good results for some unsteady sounds, 
others have shown that integration is not the likely mechanism employed by the auditory system at all 
times. A more likely approach is some form of the multiple look approach. 

3. Approach 
Conventional approaches for calculating unsteady loudness using a multiple look model have been 

proposed. The caveat to these are that the procedure requires that a Fast Fourier Transform be applied 
to very short segments of the stimulus having lengths of approximately 1 or 2 ms. This is not possible 
given the limitation in frequency resolution that this would impose on the processed signal.   

While the development of a true multiple look approach is desired, for this work, a calculation 
method that is alternative to the present loudness models, but still retains both the spirit and ability to 
account for auditory phenomenon, which the present models are incapable of was developed.  This 
hybrid approach is one which samples the stimulus signals as 1 ms looks and processes the information 
to account for known auditory characteristics.  It was further decided to focus on the specific 
characteristic of gap detection, as this is one phenomenon, which has been documented experimentally 
but has not been demonstrated to be included in any other loudness model. The following is a 
description of the methodology of the proposed model. 

3.1 Proposed Model 
The process begins with the input of a single channel of stimuli which represents a binaural diotic 

signal presented to the outer ear.  The signal is sampled as a 16-bit resolution WAV file with a 32 kHz 
sampling rate.  This will result in a file containing 32 samples for every 1 ms of stimulus data.  The 
length for each look was chosen to be 1 ms. Studies have reported this to be the minimum length for 
audibility (6). 

For the WAV file, each of the samples is given as a hexadecimal number.  A calibration factor 
taken from the acquisition system is applied to each sample.  The calibration factor scales the 
maximum value representing the full scale deflection of the acquisition file and fits this between the 
full scale deflection of the WAV file, or between the values of 32 768 and -32 768 for a 16 bit file.  
Each of the samples is next converted from a peak pressure value to a root mean square (RMS) value.  
This converts all samples to all positive hexadecimal values.  Finally, in order to represent the 32 
samples of sound level as a single 1 ms sound, a one millisecond equivalent sound level is calculated. 
This is an energy mean of the noise level averaged over the 1 ms measurement period. 

Once the 1 ms sound levels have been calculated, intelligent processing of the noise information 
can be performed.  Specifically, the signal is scanned for short duration gaps spanning in length from 
1 ms to 5 ms. If a gap is found, a detectibility shift is applied with amplitude dependant on the length 
of the gap.  While this can be user defined, a gap is taken to be when there is a 25 dB drop in level 
from one millisecond sample to the next.  The 25 dB drop for recognition of a gap is taken from 
Shailer’s 1983 publication on ‘Gap Detection as a Function of Frequency, Bandwidth and Level’ (19). 

Once a drop is found, length of the gap is determined and an amplitude adjustment is made based on 
the threshold shifts experimentally determined by Viemeister. If the gap is determined to be longer 
than 10 ms, no adjustment is applied and the gap is instead defined as a drop in level and the search 
parameter is reset.  

Once the file has been entirely searched and all detectability shifts have been applied, the file WAV 
file is reconstructed into its original form and loudness is calculated. This is done using the Glasberg’s 
TVL model.  



Inter-noise 2014  Page 5 of 9 

Inter-noise 2014  Page 5 of 9 

3.2 Test Procedure 
In order to test the proposed model, a test procedure was established using several recorded sounds 

including stationary and time varying pure tones, white noise, warble tones as well “real life” speech 
and mechanical sounds.  Some of the sounds were altered so as to insert gaps in the signals of known 
location and duration to test and debug operation of the multiple look gap correction computer code. 

Once the test signals were recorded, and in some cases modified with reference gaps, they were 
processed into 16 bit WAV files suitable for input into the multiple look gap correction and 
subsequently loudness models. The time varying loudness model used to perform the loudness 
calculation was the TVL model. As stated earlier, some of the test signals were also stationary sounds.  
While the TVL loudness model is purported to accurately calculate loudness for stationary sounds, 
these sounds were also processed for loudness using a program that follows the DIN 45631 steady 
loudness standard (3).  Differences in the results between the two models are expected to be minimal. 

4. Results 
As an initial test of the multiple look gap correction model, and its adaptation to the TVL model, 

pure sinusoidal tones were generated at 1000 Hz and tested using the various models. The obvious 
thing to note is that a sinusoidal wave is a continuous sound wave with no gaps.  For this study, gaps 
were inserted into the wave in the centre of each 10 ms segment for the first 50 ms. The next 20 ms 
duration had no gaps inserted.  The 70 ms signal was then repeated for a total signal length of 2000 
ms.  

The test results for the steady sinusoidal signals without the inserted gaps are given in Table 1.   
The test results for the steady sinusoidal signals with the inserted gaps into the signals are given in 
Table 2. Listed are the sound level for the tones, the steady loudness level calculated using the method 
specified by the DIN 45631 standard, the calculated loudness level using the time varying Cambridge 
model and the loudness level using the multiple look gap correction model. 

 
Table 1 – Loudness level for 1000 Hz sinusoidal signals without inserted gaps calculated using DIN 45631, 

TVL model and with multiple look gap correction model 

Signal Sound 

Pressure (dB) 

Stationary  

Loudness Level 

(Phons) from DIN 

45631 

Time Varying 

Loudness Level 

(Phons) from TVL 

Model 

Time Varying 

Loudness Level 

(Phons) using 

Multiple Look Gap  

60 55.2 58.2 58.2 

65 65.4 65.5 65.5 

70 72.3 71.5 71.5 

73 74.9 74.2 74.2 

80 81.8 79.7 79.7 

85 87.2 84.8 84.7 

90 93.7 90.3 90.3 

94 98.2 94.7 94.7 

 
 
 

Table 2 – Loudness level for 1000 Hz sinusoidal signals with gaps inserted calculated using DIN 45631, TVL 

model and with multiple look gap correction model 

Signal Sound Stationary  Time Varying Time Varying 
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Pressure (dB) Loudness Level 

(Phons) from DIN 

45631 

Loudness Level 

(Phons) from TVL 

Model 

Loudness Level 

(Phons) using 

Multiple Look Gap 

Adjustments 

60 66.5 68.4 70.3 

65 73.1 74.1 75.7 

70 78.3 79.2 80.7 

73 80.4 81.1 82.5 

80 85.7 85.9 87.2 

85 90.6 90.0 91.1 

90 95.7 94.7 95.9 

94 99.9 97.5 98.6 

 
Inspection of Table 1 shows very little difference between the TVL and multiple gap models. This 

is expected given that this sinusoidal signal has no gaps. The DIN results showed varying differences, 
which prompted the use of the TVL model for all subsequent tests.  

Inspection of Table 2 shows a marked change in loudness level for all models.  This is not 
surprising given that the “gapped” model does sound significantly different than the original 
sinusoidal wave and thus should not be expected to have the same loudness level.  The important 
observation is that the multiple look model has a consistent 1 to 2 phon increase over the TVL model. 
This is expected given the predictable gap duration and spacing that was applied. The conclusion that 
can be drawn here using a simple sinusoidal wave is that the resulting loudness level calculation 
follows intended adjustments set out by the development of the gap detection model.  It can further be 
said that this was accomplished by intelligent decisions based on the content of the 1 ms looks. 

The calculated loudness results for the steady mechanical sounds are given in Table 3. Listed is the 
measured sound level for the sounds at which they were recorded and subsequently analysed.  Also 
given are the steady loudness levels calculated for each signal using the method specified by the TVL 
model and the loudness level using the multiple look gap correction model.  

 
Table 3 – Loudness levels for steady mechanical sounds (white noise, warble and diesel) calculated using the 

TVL and multiple look gap correction models. 

Signal Description 

Time Varying Loudness 

Level (Phons) from TVL 

Model 

Time Varying Loudness 

Level (Phons) using Multiple 

Look Gap Adjustments 

White Noise without gaps 86.5 86.5 

White Noise with gaps 85.0 85.6 

Warble 79.0 79.1 

Diesel Engine 70.7 70.6 
As expected, the calculated loudness levels for the white noise signal containing no gaps was the 

same for both the TVL model alone and with the implementation of the multiple look gap adjustment 
model.  At a minimum this is an indication that the multiple look model did not produce erroneous 
results.  For the white noise signal with the inserted gaps, an increase of 0.6 dB is realized by 
implementation of the multiple look model over the application of the TVL model alone.  While an 
immediate application of this result cannot be given for this artificial sound, the result does provide 
the predicted outcome, thus showing merit to the model.   

As was for the case of the white noise with the gap inserted, an increase in loudness level is also 
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given for the warble sound, albeit a much smaller increase. Unlike the white noise of sinusoidal 
signals with gaps, the time trace is relatively steady and full and more absent visually of numerous 
gaps. The one sound sample that showed an anomaly was the result for the diesel engine.  Upon closer 
post inspection of the time signal, it became evident that the signal while rough does not have any 
found gaps as defined by the multiple look gap adjustment algorithm. The anomaly in the results was 
the fact that the multiple look loudness level results actually shows a decrease in loudness level by 0.1 
phons. While not at all significant, a decrease is unexpected. It has been determined that an inaccuracy 
of up to 0.1 phons can occur during the regeneration of the modified file back into the 16 bit 
hexadecimal WAV format.  This is due to the fact that the 32 samples within each look are treated as 
an average during the regeneration process.   

Two time varying sounds were also analysed using the TVL model and the multiple look model.  
The two sounds evaluated were both spoken sentences.  The evaluation of unsteady loudness for 
speech signals is a common for the application of speech recognition and intelligibility metrics.  As 
such, they were included in this study.  The first sentence was comprised of the phrase, “Suzie sold 
seashells by the seashore”.  This sentence was chosen for its smooth cadence and expected lack of 
gaps in the recorded signal.  The second sentence was comprised of the phrase, “Clickity clack, the 
train went down the track”.  This sentence was chosen specifically for its much rougher cadence and 
greater chance to have gaps within the recorded sentence. The calculated loudness level results for the 
two time varying sounds are given in Table 4.   

 
Table 4 – Loudness levels for time varying sinusoidal sweep and speech sounds calculated using the TVL 

model and multiple look gap correction model. 

Signal Description 

Time Varying Loudness 

Level (Phons) from TVL 

Model 

Time Varying Loudness 

Level (Phons) using Multiple 

Look Gap Adjustments 

Spoken Sentence “Suzie” 84.0 84.0 

Spoken Sentence “Train” 90.9 94.1 
 
As stated above, the “Suzie sold seashells by the seashore” sentence is very smooth with the 

syllables joined together with a great degree of sibilance.  This is evident by the loudness level 
result with both the TVL model and the multiple look gap adjustment model producing the same 
result.  Such an outcome can be applied to the application and understanding of alternative 
psychoacoustic metrics, particularly those concerned with speech transmission, intelligibility and 
recognition.  All of which are metrics for which their outcomes are related to the presence, or lack 
of, sibilance and alternatively harshness. 

The second sentence, “Clickity clack, the train went down the track”, resulted in a noticeable 
increase in loudness level with application of the multiple look gap adjustments.  As with the first 
sentence, this result shows significant implication and usefulness to speech metrics.  The result also 
follows the perceived difference in loudness for this harder sentence when compared to the former.  

Given the presented results, it has been demonstrated that the multiple look gap adjustment 
program does have the ability to use the looks contained within a stimulus to identify the presence of 
gaps within the signal.  Once found, an intelligent procedure is used to determine the length of the gap 
and apply the appropriate adjustment factor; one which follows the published empirical data. 

 

5. Conclusions and Recommendations 
Upon review of the results, as well as recalling the stated study objectives, these are the conclusions 

and recommendations that have been reached.  

5.1 Conclusions 
1. The objective of this work was to develop a hybrid multiple look approach which uses level 

correction factors in conjunction with temporal integration methods in order to adequately 
represent the perceived loudness levels in the presence of gaps in a stimulus signal.  A program 
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was developed which divides the input signal into 1 ms looks, checks for the presence of gaps and 
makes the appropriate adjustments.  The adjusted file is then converted to a state such that it can 
be applied to a loudness integration model. 

2. It was intended that the developed multiple look with gap correction abilities model would be 
integrated into an existing loudness model using integration theories.  The model developed and 
presented in this work was used in conjunction with the known TVL model for time varying 
loudness.  It should be noted that the multiple look algorithm presented in this work can 
immediately be used with any time varying loudness model which accepts a WAV file as an input.   

3. The focus of the multiple look model developed in this work was on the hearing phenomenon of 
gap detection.  Other stimuli and resulting hearing sensations have been identified in the 
literature as not being adequately addressed by the present temporal integration models.  Given 
that the fundamental aspect of this model included the division of the signal into short duration 
looks for intelligent decision making and processing, it can easily be adapted to include other 
phenomenon such as burst signal, something which is important to account for temporal 
pre-masking effects. 

4. It was intended that any computer code developed in this study for the multiple look model would 
be open and be easily adaptable to allow for modifications to the programs parameters and 
correction values in order to accommodate any new empirical data in the future.  The code used 
was a public domain Ruby language which is relatively simple to understand and edit with freely 
available editors.   

5. Finally, it was intended that any method developed should be well suited for use in other 
psychoacoustic metrics.  Many existing metrics such as sharpness, fluctuation strength and 
roughness begin with the calculation of loudness.  Given that the multiple look model has shown 
to improve present loudness models for the case of gaps being present in the input signal, inclusion 
of it in these other metrics would be similarly beneficial.  

 

5.2 Recommendations 
 

1. The model and subsequent code developed using the multiple look theory was designed to 
integrate seamlessly with other loudness calculation software.  As part of this, the program 
presented here was required to reconstruct the modified information contained within the 
individual looks back into a 16 bit WAV file for processing of loudness by the other calculation 
software.  It was determined that during this reconstruction process that some temporal resolution 
of the 1 ms information can be lost.  As a result, it was determined that in some circumstances an 
approximate 0.1 phon inaccuracy in loudness level can result in the final calculation.  While this 
is not a significant value, improvements can be made and are being recommended to modify the 
treatment of the 32 hexadecimal format samples contained within each of the looks to eliminate 
this shortcoming in the software. 

2. As was demonstrated in the results, the perception of speech can be dependent on the content of the 
signal, including the presence of gaps.  One of the applications where the multiple look model 
demonstrated particular promise was in the ability to analyse speech information.  The 
understanding and application of evaluation models for speech recognition are ever increasing.  
This is particularly true given the aging demographic and increased interest in the treatment of 
hearing loss.  Another application of the recognition of speech within automated systems such as 
voice activated electronics within automobiles.  It is recommended that the application of 
multiple looks be expanded into the specific area of the recognition and treatment of speech as a 
stimulus.   

3. The multiple look approach presented in this dissertation was specific to the application of the 
detection and adjustment for gaps present in the input signal presented to the ear.  It was 
demonstrated in the literature review section that gap detection, while important, is not the only 
shortcoming associated with the present day loudness calculation models.  This is especially true 
for those that rely on long term integration techniques for treatment of the temporal component of 
the sound.  It is recommended that the model be expanded to include other distinct sound 
components.  An example of this would be the inclusion of burst noise, an area which is important 
to the phenomenon of temporal pre-masking and one which is ignored by both the TVL model and 
the time varying method adapted by DIN as 45631-A1 (4). 
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