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Abstract: This paper reviews the work undertaken in the Department of Architectural and Design Science University of Sydney, on the use
of neural network analysis in architectural and building acoustics. In auditorium acoustics, developments include the use of neural
networks to predict acoustical attributes of concert halls: atributes such as reverberation time, RT g, srength factor, G, clarity factor, C80,
and lateral fraction, LF. Investigations have also been undertaken relating the acoustic quality of auditoria, as judged by conductors and
‘musicians, to ten hall *geometric’ parameters and six acoustic parameters. In the area of small rooms, investigations have been carried out
o predict the acoustic quality of music practice rooms and music teaching rooms by uilizing a combination of geometric variables as
inputs. In rooms used for speech, neural network analyses have been undertaken to predict speech levels in university classrooms. Finally,
in the area of noise control in buildings, work has been carried out using neural networks to predict the properties of acoustical materials
such as sound transmission loss (wall sound insulation) and absorption coefficients. The results of the work undertaken have shown the
potential usefulness of neural networks as design tools and, significantly, that neural network techniques have a role to play in the field of

architectural and building acoustics.

1. INTRODUCTION
Sabine (1900) laid the groundwork for architectural acoustics
and defined the subject in fairly simple terms. Everything that
was simple at the cnd of Sabine’s time appeared to become
complicated and, by the 1950, architectural acoustics had been
turned into a complex subject. This is understandable as the
field is broad and research activities have been carried out over
a large range of topics. Unfortunately, the research has been and
is often being directed to work which unavoidably conforms to
traditional architectural acoustics precepts. Although the
research has been of benefit to the acoustic community,
architects and acousticians have continued to fail to come to
terms with the concept that acoustically good auditoria cannot
be directly scaled up or down to achieve good acoustics in new
halls in the same manner in which visual aspects can be. A
reason for this is the enormous difficulties that are created by
the multiple parameters and multiple criteria aspects of
architectural acoustics. These complex situations are not easily
recognizable and therefore remain difficult to resolve using
ional methods. This paper izes research carried
out, using a new approach to help architects and acousticians
solve complex architectural and building acoustic design
problems.

The new approach being researched at the University of
Sydney involves the development of neural networks to
investigate the many issues and problems that exist in the multi-
disciplinary field of architectural and building acoustics and
which are not readily handled by conventional methods. Neural
network analysis (VNA) can be compared to multiple regression
analysis except that with NNA assumptions need not be made

about the system being modelled. Neural networks already
perform successfully where other methods do not; they have
been applied in solving a wide variety of problems including
those in the area of civil and structural engineering where they
have been used extensively [1]. The history and theory of
neural networks, and some indications of their future uility,
have been described in a plethora of published literature, for
example [1-4], therefore, only a very brief overview of how
neural networks operate will be covered in this paper. Suffice
to say that neural networks obviate the need to use complex
wave theory, and computer models, and impractical and costly
physical models.

‘The major part of the work covered in this paper relates to
investigations undertaken using neural networks in the area of
room acoustics. Also presented is research with neural
networks in the area of noise control in buildings, ie.
properties of acoustical materials and constructions.

2. NEURAL NETWORK ANALYSIS

There are many alternative forms of neural networking
systems and there are many ways neural networks may
applied to a given problem. The suitability of an appropriate
paradigm and strategy for application is very much dependent
on the type of problem to be solved. The types of networks
applied to many of the problems presented in this paper are the
basic multilayer feedforward neural networks (see Figure 1.
These networks perform a non-linear transformation of the
input data in order to approximate output data. The number of
cases (input and output parameter sets) influence the
architecture of a multilayer feedforward network. The
topology of a network consists of an input layer of neurons
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(one neuron to cach input) a hidden layer or layers of neurons
(one layer is usually considered sufficient) and an output layer
of one neuron for cach output. A neuron, also called a
processing element (see Figure 2), is the basic unit of a neural
network and executes a summation and activation function to
determine the output of that neuron. The number of neurons in
the hidden layer is approximately the average number of the
inputs and outputs, though this number is also influenced by the
number of training cases. For instance, too many neurons in the
hidden layer can result in over-training (a lack of generalization
which can be overcome by a number of strategies [5]) and lead
to large verification errors. On the other hand, too few neurons
can result in large training and verification errors.
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Figure 1: A multilayer feedforward neural network
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Figure 2: How a processing element (neuron) works. The
nottion ¥, weight from the jth neuron
o the ith neuron. (after Nelson, and Illingworth [27])

Inputs to a neural network are presented at the input layer.
Starting from an initially randomized weighted network
system, input data is propagated through the network to
provide an estimate of the output value. The error between the
actual output and the predicted value is used to adjust the
network weightings (on the connections between neurons) to
‘minimize the error in the predicted outputs. In this iterative
procedure, the new weights are accepted if the resulting error
is smaller than that recorded using the previous set of weights.
Several algorithms [2-4] are commonly used to achieve the
‘minimum error in the shortest time.

Some of the characteristics that support the success of
neural networks and distinguish them from the conventional
computational techniques are:

+ The direct manner in which neural networks acquire
information and knowledge about a given problem domain
[6-17] (lcarning interesting and possibly non-linear
relationships) through the training phase.

+ Neural networks can work with numerical or analogue data
that would be difficult to deal with by other means because
of the form of the data or because there are so many
variables.

+ Neural network analysis can be conceived of as a black box
approach and the user does not require sophisticated
mathematical knowledge.

« The compact form in which the acquired information and
knowledge s stored within the trained network and the case
in which it can be accessed and used.

+ Neural network solutions can be robust even in the presence
of noisc in the input data.

+ The high degree of accuracy reported when neural networks
are used to generalize over a set of previously unscen data
(ot used in the training process) from the problem domain.

While neural networks can be used to solve complex
problems, by what can be simply considered an interpolation
process involving multivariate nonlinear mappings (in some
cases mapping is acquired automatically and very fast because
of the inherent parallel nature of NNA), they do however
suffer from a number of shortcomings:

« The data used to train neural networks should contain
information which, ideally, is spread evenly throughout the
entire envelope of the system.

+ There is limited theory to assist in the design of neural
networks.

« There is no guarantee of finding an acceptable solution to a
problem.

« There are limited opportunities to rationalize the solutions
provided.

3. NNA AND ROOM ACOUSTICS

Concert halls: acoustical parameters

Concert hall design, is unique in its complexity. This is mainly
because concert hall acoustics, in all its diversity, is a multi-
criteria and multi-parameter discipline. Sabine’s famous work
led to the widespread use of reverberation time. For many
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years this was the only acoustical parameter used in the design
of auditoria. However, uncertainties caused by the audience and
performer absorption, together with the many anomalies
inherent in the classical equation and other related theoretical
formulae, are responsible for the often inaccurate prediction of
reverberation times. These predictions are often not within the
subjective difference limen of 5%, i.e. A7/T= 0.05. This reason
and because simple and accurate rules of thumb suitable for use
at the early conceptual design stage led Nannariello and Fricke
[6,7) to investigate an alternative method of predicting
reverberation time. It was demonstrated that neural networks
can better, more readily and accurately predict low frequency-
band RT, 5.5, and mid frequency-band RT, 10 reverberation
times for auditoria.

Neural networks were trained using constructional and
acoustical data of auditoria as input variables. Importantly, the
input variables associated with the absorption coefficients were
replaced by simple rating coefficients in terms of the
absorptivity of materials. The result of this work provided
evidence that neural networks 1) can be used to make
predictions of reverberation times at low and mid frequencies
for auditoria, and 2) that these predictions are as good or better
than existing methods. Linear regression analysis of measured
versus neural network predicted reverberation times, for low
and mid frequency bands, produced R2s of 0.91, and 0.94
respectively. Furthermore, and more importantly, the results
showed excellent strength of association and high percentage
agreement (10 out of 12 predictions were greater than 90%)
between measured and predicted reverberation times. The
results were repeatable and within range of the subjective
difference limen of 5%.

Nannariello and Fricke [7) drew from the results obtain
previously [6] and extended the idea to using neural networks
built with a reduced number of input variables (a network
“dimensionality’ reduction) to predict RT5.25 and RTs.1000
for auditoria . The concept was further extended to developing
some basic relationships and rules of thumb on how simple
‘geometric parameters affect reverberation time. The results of
these investigations are presented in Ref. 7.

It has long been realized that there is more to auditorium
acoustics than reverberation time. Over the last 30 years or so,
a number of objective acoustical parameters (related to the
subjective assessment of the acoustical characteristics of
auditoria) have emerged to aid the design of auditoria.
Consequently a number of methods have been developed [18-
21 to predict parameters such as the strength factor G, the
clarity factor Cyy, lateral energy fraction(LF, and interaural
cross-correlation coefficient JACC, but these methods have
their limitations.

Nannariello and Fricke [9] investigated and developed a
method of predicting G, Cgg, LF, and 1-IACCy values in
auditoria using neural networks. As a trial of this concept, and
because well-documented measured data from halls is a rarity,
Nannariello and Fricke [8] used neural networks trained using
ODEON 3.1 numerical predictions. It was important to
determine whether the neural networks could acquire the
information and knowledge about the given domain (sound
level distribution) and make accurate sound level (strength

factor, G) predictions. A number of general conclusions came
from this work. Firstly, that a neural network could be traincd
and tested using numerical predictions. Secondly, that these
networks, because they use simple inputs, could be used in the
early stage of a design. Thirdly, and most interestingly, that at
least for reasonably diffuse shoebox shaped rooms, neural
networks could make accurate predictions of G values. And
finally, that there was a good basis for carrying out further
investigations using noisy and poorly distributed measured
data to train neural networks to predict G values and possibly
values of other acoustical parameters.

The subsequent work of Nannariello and Fricke [9]
provided evidence that non-lincar models, such as neural
networks trained with geometrical and measured acoustical
data, could make predictions of the G, Cyy, and LF values in
concert halls. The predictions were as accurate as those
calculated using existing models. The study demonstrated that
neural networks could be trained with a handful of simple and
available input variables such as the volume, maximum
length, total floor area, reverberation time and tube ratio (se
below). Between five and cight input variables were used to
train networks to predict scat-averaged G, Cyp, and LF. Six
input variables were used to train networks to predict position-
dependent G values.

1t was demonstrated that the exact positions of seats in a
hall were not required to accurately predict the average
parameters. For the 126 receiver positions, in the 8 auditoria
tested, the neural network analysis produced excellent results.
Detailed descriptive analysis of the 8 auditoria in the 1000 Hz
octave frequency band produced R2s between predicted and
measured data of between 0.29 and 0.93. More importantly,
the absolute average errors and roof mean square errors were
within the subjective difference limen of G, which is
approximately cqual to + 1 dB. Table 1 shows the accuracy of
neural network predictions for the scat-averaged parameters
G, Cyp, and LF. The Table shows that, for the auditoria tested,
neural network prediction errors for G, Cyg, and LF were, in
most cases, within the subjective limen of +1 dB, 0.5 dB, and
0,05 dB respectively.

Nannariello and Fricke [10] extended the idea of using
neural networks to make predictions of auditorium attributes
to using neural networks to develop some basic knowledge
and rules of thumb on how simple geometric parameters affect
the attributes of an auditorium (in this case G). In this work,
the use of acoustical parameters, such as reverberation time,
as an input variable, was deliberately avoided. The results
showed that neural networks trained with 4 simple geometric
input variables—the hall volume, ¥, the maximum length,
Lypy, maximum width, Wy, the total acoustical floor area, S,
and the tube 1atio [19], Dy (WppeasXHpan)—Where Dy is
the mean depth of the hall (dxs(anue from front of platform to
rearmost wall) and Wieyq and Hie,y are the mean width and
height respectively—gave accurate predictions of G. Table 2
shows the accuracy of the predictions: the high global
correlation coefficient (R%g = 0.95) and low global crrors
(RMSg=0.37, StdErrg = 0.39 and AbAvErrg = 0.30 dB). The
prediction errors are well below the subjective difference
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limen for G. The other attendant benefit was that the neural
network models produced relationships which, in most cases,
agreed with the published literature [19,22,23]. That is, G is
affected by a number of architectural factors, the most
important of which are the distance of the listener from the
stage, the presence of reflecting surfaces, the acoustical floor
area (the area occupied by the audience), and the volume of the
auditorium. Significantly, however, the work also showed that
determining the cubic volume and number of seats is not
sufficient as a ‘rule’ in modern auditorium design. The
optimization of G is dependent on a combination of
geometrical factors including the shape of the hall, which is
represented by the tube ratio and the maximum dimensions.
This is demonstrated in Figure 3. It shows a three-dimensional
quadratic smooth response surface plot of G, as a function of
the tube 1atio, Dpeyr/WinearHimeans and the volume, V. The
response surface plot also shows the non-lincarity of the
situation i.e. that the preferred valuc of G is dependent on the
tube ratio and the volume.

3: Quadratic smooth surface plot (¥7R,G) showing
relationship between averaged acoustic parameter G (dB), hall
volume ¥ (m3) and tube ratio, D e W peueXHo (1) [10].

Continuing with the neural network approach, Nannariello
and Fricke [26] investigated a neural-computation method for
predicting the carly interaural cross-correlation coefficicnt,
IACCs, in unoccupied auditoria. Thirty-six auditoriums were
used in the neural network analysis. A multilayer perceptron,
fully connected, three layer feedforward network architecture,
based on the supervised learning procedure was used to build
the neural networks. Seven input variables were used in the
first layer. The set-up function for the neural nslwork anslyscs
was: 1-LACCgs = IV, L. Watx> Dimeasd WoneanHimeans
RT3, where the symbols specify quantities prevmusly deﬁned
and 4,, is the side wall angle of hall, and R,y is the mid
frequency reverberation time. Results of the investigations
showed that the neural network model could predict ZACCg;
values within the subjective difference limen, which is 0.075 =
0.008. Five auditoria were used to assess the neural network

analysis method and the errors between measured and
predicted 1-ACCyy ranged from ~0.05 to 0.02. The neural
network model used to make 1-IACCy; predictions was
imbedded in an Excel spreadsheet so that designers and
researchers, without assess to specialized neural network
software, could use the results of the work.

Coneert halls: acoustical quality

Architects and designers, when designing concert halls, still
make use of precedents especally at the sketch design stage.
This technique, in most cases, has not guaranteed good
acoustics. Fricke and Han [13] undertook a neural network
analysis which related the acoustic quality of halls, as judged
by conductors and musicians (subjective acoustic quality
index, AQI [12]), to ten hall parameters; volume, surface area,
number of scats, length, width, height, rake angle of seats, a
surface diffusion index (visually assessed) [12-14], stage
height and extent of stage shell/enclosure. Fricke and Han’s
work demonstrated that neural networks offered the
opportunity to study the non-linear interactions of the many
variables involved in the acoustic performance of concert
halls and evaluate the acoustics of halls though the standard
deviation ratio SDR achieved (= 0.90) lefta lot to be desired.
Further, unpublished work has considerably reduced the
uncertainty of predictions.

Tn other work carried out by Fricke [14-15], the visually
assessed surface diffusion index SDI, together with Beranek’s
[23] other orthogonal variables, the early interaural
correlation JACC;, the time delay between the direct and first
reflected sound at the centre of the main seating area T, the
carly decay time EDT, the measure of the average sound level
in a hall at mid-frequency Gy, and the bass ratio BR, were
used as input variables to train neural networks to predict the
acoustic quality AQI, of halls. The results of the neural
network analyses were used firstly to investigate the
importance of surface diffusion [14], and secondly they were
applied to the Concertgbouw, in Amsterdam, to see how
changes in the orthogonal variables might change the acoustic
quality AQI, of the hall [15].

From the results of the neural network analysis, Fricke
[14] concluded that Beranck’s approach to the prediction of
the acoustic performance of concert halls is valid, however a
better way of predicting the acoustic performance may be to
use a trained neural network. The neural network results
showed that:

+ using Beranek's six orthogonal parameters as inputs, better
concert halls are achieved with higher SDJ values

« the importance of SDI varies from hall to hall

+ in some cases a relatively small error in assessing the SD/
value could result in a hall being ranked at the opposite end
of the quality scale.

Fricke [15] used the Concertgebouw data in a neural
network analysis to compare the relatives merits of a number
of approaches to predict the AQL. Several combinations of
Beranek’s input variables were used to train a set of neural
networks and a second set of neural networks were trained
using Beranek’s input variables together with the number of
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seats (N), and the volume of the hall. The results of the neural
network analyses were presented as standard deviation ratios,
SDRs, and as AQI response surfaces. The SDRs values show
the degree to which the data had been fitied. SDR value of 0.1
is considered an excellent fit, a ratio of 1 means that the
predictions are no better than using the mean value. Response
surface plot technique was used to show the relationship
between parameters and AQI From the results of neural
network analyses using many combinations of input
parameters Fricke conclude that:

+ Ando's four-parameter model (IACC, T, Gpig, and EDT)
[25] is not as good as Berancks model [23] (SDRs of 0.87
and 0.40 respectively).

* A five-parameter model using (IACC, Ty, Gyyg EDT, and
SDI) appears to be only marginally worse than the six-
parameter model SDRs of 0.42 and 0.40 respectively. A four-
parameter model using (JACC, EDT, Gy and SDI) is
marginally better for predicting AQ/ (SDR =0.37) than
Beranck’s six parameter model.

+ There does not appear to be lincar relationship between AQI
and some of Beranck's parameters.

« A Bass Ratio BR, of less than 1.0 is preferred and is contrary
to accepted wisdom.

« Tt is possible to obtain better predictions of the acoustic
performance of concert halls using ZACC, Tj, Gy, EDT, SDI
and N o IACC, Gy, EDT, BR, SDI and N than it is using
any combination of Beranek’s parameters (SDRs of 0.25 and
0.33 respectively).

Rooms for speech

It would be very useful at the schematic design stage of a

classroom, to have an expeditious and accurate method of

predicting the distribution of sound levels (speech levels).

Nannaricllo, Hodgson and Fricke [11] investigated and

developed a method of predicting the Sound Propagation SP,

in university classrooms. The SP is the variation of sound
pressure level, normalized to the source pover level, with
distance from an source. C and

error was relative small and that predictions of specch levels
at listener positions were accurate to within the magnitude of
the subjective difference limen. Table 3 highlights, for
example, the accuracy of neural network predictions, in the 4
classrooms tested, in the 1000 Hz octave frequency band.
Small music rooms
A large amount of research has been undertaken on acoustics
of auditoria for the performance of live music and for speech,
but there has been very little research carried out on the
acoustics of smaller rooms used as music rooms and music
teaching rooms. Osman and Fricke [16] developed a method
of predicting the acoustic quality of small music rooms by
utilizing a neural network trained with data collected and
measured using binaural recordings made in the small music
rooms. The 36 rooms used in the investigations were
p;\mllelepmed]c with volumes ranging from 24 to 427 cubic
. A combination of simple input variables for four
il msrments (cello, saxophone, trumpet, and guitar)
was used to build a number of neural networks. The neural
network models were used to predict the AQI of six small
music rooms. From the results of the investigations Osman
and Fricke concluded that neural network models can be used
to predict acoustic performance of small music rooms, and
that room volume, reverberation time, and room height arc the
most significant elements that determine AQJ.

4. NNA AND NOISE CONTROL IN
BUILDINGS
Sound transmission loss

Bearing in mind that the method of determining the
transmission loss can be both expensive and time consuming
Coomes and Fricke [17], using the results from acoustic
laboratory tests on known partitions, investigated the
application of neural network analysis for predicting the
sound transmission class, STC, and transmission loss, 7L, at
specific frequencies, for different types of drywall
constructions. Basic parameters (stud frame size, mass of wall

acoustical data for 34 randomly chosen unoccupied University
of British Columbia (UBC) classrooms were used for the
neural network analyscs. The results of this work showed that
neural networks trained with variables that have a causal
relationship to the acoustical quality of the UBC classrooms

RMS errors for SP in
cach of the frequency bands, were within the subjective
difference limen for steady-state sound pressure levels, which
is about 1 dB (i.e. AE/E = 0.26 where E is the energy density).
Furthermore, results showed that SP predictions for classrooms
were in better agrcement with measured values than those
obtained using Barron's revised theory [18] or the Hopkins-
Stryker equation.

‘The good fit between measured and predicted SP values for
the four classrooms tested was highlighted by the high
corrclation (R2 = 0.97). The average error and standard
deviation of the variations () between measured and predicted
SP in the octave bands 125 to 2000 Hz ranged between ~0.72
(0.35) and +0.69 (1.05) dB, confirming that in most cases the

the inclusion, type and with of any insulation,
overall partition widih, minimum sheet lining thickness, and
the difference in sheet lining from one side to the other), were
used as inputs for the neural network analysis. The total
number of training cases used in the neural network analyses
was 128 (this included walls with isolated or resilient framing
systems).

The results obtained were highly encouraging, with neural
network designs achicving predictions for STC values within
a similar fonee 0 those dclermmed by a number of acoustic

for For instance,
using dats from the Canadian NRC on all types of dry wall
constructions a neural network was trained to predict STC
values within a RMS error of STC 2.01. The training data
included partitions with S7C ratings between 32 and 60. The
inputs variables used in this case were type of studs (timber or
steel), type of fixing (direct or vibration isolated), mass of
wall, overall thickness and absorbent infil type (none, mineral
wool, fibreglass, polyester or cellulose). Coomes and Fricke
concluded that the modelled neural networks provided a good
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means of predicting STC, and that the significant
computational effort required by other simulation methods are
considerably improved on by the use of neural networks which
provide a less complex prediction technique.

Sound absorption coefficients

Current measurement techniques for absorption coeflicients,
can give results from different laboratories which are more than
20% different. Such difference can mean the difference
between winning and loosing a contract worth million of
dollars. As part of the research program at the University of
Sydney, attempts were made to develop a method of predicting
sound absorption coefficients at specific frequencies, which
was more reproducible and less costly and demanding than
existing methods, by exploring the possibilities of applying
'NNA. Neural networks were first used to examine the influence
of various air gaps on the absorption performance of porous
materials. The neural network analysis used 8 input variables,
the depth function (the air gap distance), the thickness of the
material, and results of absorbent coefficient test at cach of the
octave frequencies. The analyses used a sample of 14 different
ceiling tiles tested over a range of air gaps in order o leam a
pattern of influence of air gap distance on the absorption
coefficient. The results showed that neural networks were
capable of mapping the absorption coefficients. In cach of the
specific frequency bands the error between known and
predicted values of absorption coefficients was S to 10%. This
work is continuing.

5. CONCLUSIONS

Indications are that concert hall design is ready to develop into
a more scientific discipline. While art will always have a role
in the design of concert halls, neural-computations present the
opportunity of to extend the degree of science in the design
process. The results of investigations carried out 5o often
suggest that neural network techniques appear to be particular
appropriate for application at the conceptual stage of a design.
Neural network analysis approach not only considers the

possible non-linearity of the combination of factors pertinent
to the acoustic quality of a hall but it makes use of precedents
which are intrinsic in the neural network model.

The work presented in this paper as shown that the neural
network technique, using limited input variables, has been
successfully used o predict the acoustic quality of concert
halls and small music rooms. It has also been used to establish
and investigate guidelines and rules of thumb for concert hall
design. Furthermore, results of work in the area of auditoria
for music and auditoria for speech have shown that neural
networks—though not  without ~ limitations—can  be
successfully used to make accurate predictions of acoustical
parameters, at an carly stage of the design.

Testing the acoustic performance of various types of wall
constructions and calculating the sound absorption coefficient
materials require complex and costly techniques which
require excess computer and analysis time. The work
presented here has shown that there is potential for the neural
networks technique to mitigate some of the costly issues
associated with the laboratory testing. In addition, the
technique can be used as design tool to complement formal
acoustic testing and at the same time provide accurate
predictions for STC and sound absorption coefficients at
specific frequencies.

The most general conclusion to come out all the work
undertaken and presented here is that the results of the
investigations have shown the potential usefulness of neural
networks as design tools. Furthermore and significantly,
neural network techniques have a definite role to play in the
field of architectural acoustics and in the acoustic community
at large. Finally, it is hoped that ongoing research in this ficld
will lead to other applications and the development of more
robust [5,24] neural networks to further improve their efficacy
in making accurate predictions of acoustical parameters.

‘Table 1: Descriptive statisties of averaged parameters, G, Cgo, and LF predictions for auditoria ‘tested using neural networks (sce Ref. 9).

Halls

G Meas GPNN__ GErr  Ci Meas Cs PNN__Cu Err __LF Meas LF P NN _LF Err
st 03 5 12 13 3 X

1 8
2 654 6.74
3 341 3.08
4 286 3.00
s 1.58 130
6 550 456
7 3.57 3.85
8 438 5.20
G Meas = Measured strength factor, G, (dB)
G_PNN = Neural network predicted strength factor, G, (dB)
G_Err = Error between measured and predicted strength factor,
G, (dB)
C80_Meas = Measured clarity factor, C80, (dB)

C80_P_NN = Neural network predicted clarity factor, C80, (dB)

C80_Err = Error between measured and predicted clarity
factor, C80, (dB)

LF_Meas = Measured lateral fraction, LF

LF_P_NN = Neural network predicted lateral fraction, LF

LF_Err = Error between measured and predicted lateral

fraction, LF
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‘Table 2: Descriptive statistics of neural network trained with set up function G = f (¥, Ly Tube Ratio, Sy) used to predict average G values
for the 7 enclosures for which the resulting R'Ga = 0.95, StdErrg> = 0.39, AbAvErr: = 0.30 and RMSgs = 0.37 (sce Ref. 10)

Halls Measured G values (dB) ‘Neural network Predicted G values (dB) Error between measured and
predicted values (dB)
T 338 789 069
2 654 6.87 033
3 341 3.46 0.05
4 286 338 052
5 158 181 023
6 550 5.61 o011
7 3.57 3.43 -0.14
Rig= Global correlation coefficient between the measured and predicted G
*StdErrg = Standard deviation of errors between the measured and predicted G for the seven halls (dB)
“AbAvErr, = Absolute average error between the measured and predicted G, for the seven halls (4B)
“ RMS, = Root mean squareerror between the measured and predicted G, for the seven halls (dB)
“Table 3. D ics of a neural network result for Propagation, SP, predictions for 4 classrooms at a total of 20 listener position

i the 1000 Hz octave band. SP = sound pressure level minus sound power level (Lp-Lw) at that position (4B) (see Ref. 11)

Classroom Ros (m)* M_SP P_Nnet® R Err_SP* NN_RM:

“Ros = Distance between sound source and listener position (m)
*M_SP =  Measured Sound Propagation, SP, at listener position (dB)
«P_NNet Neural network predictions of Sound Propagation, SP (dB)
R Coefficient of determination (correlation coefficient)
“Err_SP - Error between measured and predicted Sound Propagation, SP (dB)
NN_RMS = The root mean square error of measured and predicted Sound Propagation, SP (dB)
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