VOCAL TRACT RESONANCES: A PRELIMINARY STUDY OF SEX DIFFERENCES FOR YOUNG AUSTRALIANS

Tina Donaldson, Diana Wang, John Smith and Joe Wolfe School of Physics, University of New South Wales, Sydney 2052

Abstract: We report direct measurements of the first two resonance frequencies of the vocal tracts of young women university industry producing the vocabs of Australian Eagling. The resonance are determined from the response of the tracts of a length and, external, accoustic source. From these data we construct a vocel resonance may for these Australian women and compare it with the corresponding data for a sample of young Australian many also university students.

1. INTRODUCTION

Each yowel sound in a language or dialect is characterised by a set of formants, which are broad maxima of acoustic power in the speech spectrum [1,2]. These formants are produced by resonances of the vocal tract, which in turn depend on its geometry, including the height of the jaw and the position and shapes of the tongue and lips. A plot that locates each yowel by the frequencies of the two formants or resonances with the lowest frequencies is called a vocal plane or vowel map. The formant frequencies of Australian English have been measured for male speakers [3,4]) and female speakers [5-7]. For reasons that we explain below, formants are more difficult to measure objectively in women than in men. Furthermore the precision of measurements can be improved considerably if the resonances of the tract rather than the formants of speech are measured. Recently the vocal tract resonances have been measured directly for a sample of young Australian men, who were students at the University of New South Wales in Sydney [8]. Here we measure directly, for the first time, the vocal tract resonances for vowels in Australian English as spoken by young Australian women. The sample was taken from students at the same university.

We begin with a brief overview of the source-filter model of voiced speech. In this model [1] (see Figure 1), the vibration of the vocal folds produces a periodic, harmonicrich signal at the fundamental frequency f_{-} . This signal is transmitted to the radiation field outside the mouth by the vocal tract, which has a frequency dependent gain. Resonances of the vocal tract produce peaks in the gain spectrum that in turn give rise to maxima in the envelope of the speech spectrum. The broad peaks in the output sound spectrum are called formants. For non-nasalised speech, the human vocal tract may be approximated as a tube that is nearly closed at the glottis or vocal folds and open at the mouth. The radiated power of speech is increased (all else equal) when the tract acts as an impedance matcher from the low acoustic impedance of the radiation field at the mouth to the higher impedance at the glottis: in other words, for resonances with a pressure anti-node near the glottis and a node near the mouth. If the vocal tract were a tube of length L with uniform cross section, these resonances would occur at wavelengths $\lambda = 44$, 4J, 34J set. Taking L - 170 mm, the resonance frequencies would be approximately 500, 1,500, 2,500 Hz, etc. (In fact a tract pronouncing the vowel [3] as in 'beard' has resonances at approximately these frequencies.) However, changing the shape of the tract varies considerably the frequencies of the resonances.

Figure 1. The source-filter model for voiced speech. The harmonic-rich signal from the vocal folds (top) is transmitted to the radiation field (bottom) via the tract. The tract most effectively matches the impedance at its resonances. The middle sketch represents the tract as a uniform cylinder and shows the pressure amplitudes. In practice, the resonance frequencies are modified by moving the size, tongue and lines. The frequency RI of the first resonance is determined largely by the height of the jaw and thus the mosth opening. (As a tube is increasingly flared at the open end, the lowest resonance frequency tises, and the spacing of resonance is decreased.) The frequency R2 of the second resonance is more strongly determined by the position at which the tangue constricts the mouth flaging for tongue constriction forward and the groups in languages) that of no at us elivation forward and European languages) that do no at us elivation RI and RIlargely determine the vovel sound, while RI and RI mainly carry information characteristic of the speaker.

The vocal folds vibrate at a fundamental frequency f_{ab} which is typically in the range 80 to 200 Hz for men and about 150 to 300 Hz for women, f, is also the spacing between harmonics in the speech sound. It is this spacing that limits the resolution in determination of the formants - the peaks in the spectral envelope - and which consequently makes determination of formants for women in general less precise than for men. Signal processing algorithms for determining the formants require parameters input by the experimenter, and when precisions substantially smaller than f, are sought, the values of these parameters affect the values of formants measured. Fig 1 illustrates the difficulty of obtaining precise values of the formant frequencies when the harmonics are spaced by an f, of 200 Hz, typical of women's speech. In this study, we overcome this problem by employing an external source of acoustic current at the mouth to excite the vocal tract while the subjects phonate. This allow's determination of the resonances of the tract with a typical resolution of ± 10-20 Hz [8].

2. MATERIALS AND METHODS

The method is an adaptation of one described previously [8-10]. Briefly, a computer (Macintoh Hei) uses a analogue/digital card (National instruments NB-A2100) to synthesise a waveform as the sum of sine waves with frequencies from 200 to 4,550 Hz, with a spacing of 5.4 Hz. This waveform is a mainfield and passed to a loudpeaker that is matched via an exponential horn to a pipe of inner diameter of mm. The end of this pipe, Fildes work of the size about 16 GPs and $^{-1}$ of 16 GD. This source is about 16 GPs and $^{-1}$ of 16 GD. This source is placed vertically so that the end of the pipe, glast touches the subject's lower Hg. A microphone (6 mm diameter), whose signal is recorded by the same A/D card and computer, is attached to the end of the pipe.

For each subject, a calibration procedure is conducted, during which the amplitudes of the individual sine waves are adjusted so that the microphone signal measured with the subject's mouth closed is independent of frequency. During this calibration, the acoustic pressure p_{ad} at the microphone is $m_{a}/\Delta _{au}$ where u_{aci} is the acoustic current and Z_{ad} the impedance of the radiation field at the (closed) mouth, as abilited by the subject's face. (The disturbance of the radiation field by the presence of the source and microphone shifts the measured reasonance frequency by 11 Hz or less, which does not exceed the precision of the measurements.) Because of the high output impedance of the source, the current produced during a measurement is almost identical to that produced during calibration. During photoation, the microphone signal is the sum of that due to the subject's voice (which consists of harmonics of f_d) and that produced by the interaction of the injected acoustic current with the subject's vocal tract. The acoustic impedance of the subject's tract \mathcal{J}_{m_d} is in parallel with \mathcal{J}_{m_d} so the broad band component of the acoustic pressure is thus $p_{m_d} = u_d \mathcal{J}_{m_d} \mathcal{J}_{m_d} (\mathcal{I}_{m_d} + \mathcal{I}_{m_d})$. We plot the acalibration. For the broad band component of the signal, this yields

$$r = \frac{p_{meas}}{p_{cal}} = \frac{Z_{tract}}{Z_{rad} + Z_{tract}} = \frac{1}{1 + Z_{rad}/Z_{tract}}$$

Making the assumption that the frequency variation of Z_{real} is much less than that of $Z_{reach} \gamma$ has maxima when Z_{sour} has maxima.

The subjects were nine Australian women, aged from 18 to 20, who were first year physics subtacts at the University of New South Wales in Sydney. Their data are thus suitable for comparison with those for males [3]. All had been born in Australia or had fived in Australia for longer than seven years and were recognised by the investigators as having uarcmarkable Australian accents. The vowels were presented in a Λ_{old} or Λ_{old} (v creater. The works used (with phonetic vowel symbols in brackets) were "heed" [1], Third" [1], Thead" [1], Thad" [6], Thar" [6], Thord" [10], "hood" [10], "whold" [10], "mart" [2], Thord" [13]. Theory were asked to pronounce and to sustain the each of the words for four seconds, whilst each measurement was made. The series was then repeated.

Figure 2. The ratio of the spectra measured with the mouth open to that with the mouth closed ($\rho_{openf}/\rho_{closed}$) for the vowel /n'(in "hot"). Several harmonics of the voice signal with findamental frequency $f_{\star} = 215$ Hz can be seen. The maxima in the Groad band signal corresponding to the resonances R1, R2, R3 and R4 are indicated by arrows.

3. RESULTS AND DISCUSSION

Figure 2 shows the magnitude of the measured ratio $\gamma = \rho_{aud} \rho_{aud}$ for one of the subjects pronouncing the vowel [or] in "hot". The narrow peaks are the harmonics of the fundamental $f_c = 215$ Hz. The broader peaks in the broad band signal at about 550, 1050, 2950 and 3450 Hz are due to the resonances is more easily identified than the first formant.)

Figure 3 shows R1 plotted against R2. (Plots of F1 or T2, with axes inverted, are traditional in acoustic phonetics because phoneticians have traditionally plotted jaw height voposition of the tonges constriction). The relative positions of the vowels are similar to those in the comparable resonance of for young Austalian men [8]. The relative positions are also similar to those reported for the formator of Australian resonances and formation, we may also show the similar to this study, whereas Cox [5] measured them in normal speech. The substantial overlip between Taward [c] and Tur [A], and

Figure 3. The distribution of (R2,R1) for the vowels of English as spoken by this sample of young Australian women. The centre of each ellipse is the mean of (R2,R1). The slope of the major axis indicates the regression of R2 on R1, and the semiaxes are the standard deviations in those directions.

Figure 4. The displacement of the average resonance data for women reported herein from those reported for Australian men [8]. The displacement averaged over all vowels is also indicated.

between "heed" [i] and "hid" [I] may seem surprising until one realises that these pairs are usually distinguished in normal speech by duration. The data are also included in the Table.

In all cases, the frequencies Ri for the female subjects were higher than those for males, except for R1 in "heed" [1]. Figure 4 shows that the average displacement of women's from men's data is thus approximately away from the origin of the vowel plane. The average value of the increase in R for the women's data was 12% (65 Hz) for R1 and 20% (290 Hz) for R2. The displacements are comparable with the average increases in reported formant frequencies for Australian English (20% in F1 and 15% in F2 [5]) and Greater American English (16% in F1 and 25% F2 [11]). One possible explanation for the difference is a difference in the average lengths of male and female vocal tracts. However, social effects may be important, too, and people may learn to produce the resonances appropriate for their sex and f.; a person with a relatively long vocal tract could readily raise R1 and R2 for each vowel simply by opening the mouth and advancing the tongue by a small amount.

Table. The mean and standard deviation for the resonant frequencies of the vowels spoken by Australian university students, male and female.

vowel	/1/	/1/	/ɛ/	/æ/	/a/	/a/	/o/	/u/	/a/	/a/	/3/
word	heed	hid	head	had	hard	hot	hoard	hood	whold	hut	jeard
R1 female	350±60	420±80	600±60	730±110	740±130	650±70	570±70	430±70	390±80	710±100	600±40
RI male	350±40	370±50	510±50	610#60	630±60	590±60	510±50	420±40	370±50	630±60	510±40
R2 female	2490±390	2300±250	1930±90	1740±150	1330±70	1200±100	1060±110	1110±120	1670±250	1300±130	1620±160
R2 male	1730±200	1720±170	1610±120	1440 ± 120	1200+110	1030±80	940±130	980±210	1350±230	1180±140	1380±90

ACKNOWLEDGMENTS

We thank our volunteer subjects. This paper is based on an undergraduate research project by TD and DW.

REFERENCES

- Fant, G., Speech Sounds and Features. MIT, Cambridge, Mass (1973).
- [2] Clark, J. and Yallop, C., An Introduction to Phonetics and Phonology, Basil Blackwell Ltd, Oxford (1990).
- [3] Bernard, J., Towards the acoustic specification of Australian English' Zeitschrift fur Phonetic, Sprachwissenschaft und Kommunikationsforschung, 23, 113-128 (1970).
- [4] Bernard, J.R. and Mannell, R.H., "A study of /h_d/ words in Australian English", Working Papers of the Speech, Hearing and Language Research Centre, Macquarie University (1986).
- [5] Cox, F., An Acoustic Study of Vowel Variation in Australian English, Doctoral dissertation, Macquarie University, Sydney (1996).

- [6] Cox, F., 'Vowel change in Australian English', Phonetica, 56, 1-27 (1999).
- [7] Cox, F., and Palethorpe, S., 'The changing face of Australian English vowels', In English in Australia. eds D.Blair and P.Collins. John Benjamins Amsterdam/Philadelphia pp 17-44, (2001).
- [8] Epps, J., Smith, J.R., and Wolfe, J., 'A novel instrument to measure acoustic resonances of the vocal tract during speech', *Measurement Science and Technology*, 8, 1112-1121 (1997)
- [9] Dowd, A., Smith, J.R., and Wolfe, J., 'Real time, noninvasive measurements of vocal tract resonances: application to speech training', *Acoustics Australia*, 24, 53-60 (1996).
- [10] Dowd, A., Smith, J.R., and Wolfe, J., 'Learning to pronounce vowel sounds in a foreign language using acoustic measurements of the vocal tract as feedback in real time', *Language and Speech*. 41, 1-20 (1997).
- [11] Petersen, G.E., and Barney, H.L., 'Control methods used in a study of vowels', J. Acoustic Soc. Am. 24, 175-184 (1952).

Achieve the ultimate with Brüel & Kjær service

Brüel & Kjær offers faster and better service than any other lab in Australia - at very competitive prices!

For more information on how your business can save on repairs and calibration costs ...

Call Brüel & Kjær's Service Centre today on 02 9889 8888

