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Abstract: Integrated machine fault diagnosis is usually conducted by considering different types of signals so as to improve the accuracy of
diagnosis. This paper presents a novel approach for integrated machine fault diagnosis based on the vibration signals alone. Wavelet packet
transform i ibration signals, followed by the selection of best bases. We consider each best basis as 2 local site, then
‘extract features from it and make a local decision using probabilistic neural networks. The local decisions from each best basis are fused to
be a global conclusion using a weighted average method. The whole diagnosis process is implemented under  uniform framework. An

experimental case shows that this approach improves the accuracy of diagnosis.

1. INTRODUCTION

Wavelet transforms (WT) and wavelet packet transforms
(WPT) are popular time-frequency analysis techniques [1-2].
In the past two decades, these techniques have been
rescarched and applied in a variety of ways [3]. In vibration
analysis, WT and WPT are preferred to the traditional fast
Fourier transform (FFT) particularly in the analysis of
transient signals [4-5).

WPT is the extension of WT and generates a binary tree of
bases. Selecting the best basis from the tree is fundamental.
For pattern classification, the best basis guarantees a best
separation capability. In addition, extracting features from the
best bases rather than from the binary tree helps reduce the
feature dimensionality.

It is common to extract features from individual best basis,
and then concatenate them in a high dimensional vector space.
However, a high dimensional vector space may also be sliced
into several low dimensional ones using distributed data
mining (DDM) approach [6]. Decisions from each low
dimensional space can be fused to a potentially more accurate
conclusion. WPT creates opportunities for DDM and decision
fusion, since it distributes the signal information into the best
bases. In this paper the authors propose the extraction of
features from individual best basis of WPT using the concepts
of DDM. The local decisions are then made by classifiers. A
final conclusion s drawn using the decision fusion technique.
‘This approach was used to develop an integrated machine
fault diagnosis procedure based on vibration signals.

The paper is arranged as follows. Section 2 describes the
techniques used, viz., WPT, probabilistic neural networks, and
decision fusion. Section 3 presents a framework for the
integrated fault diagnosis. The proposed method is validated
using signals acquired from typical faulty ball bearings in
Section 4. A global probabilistic neural network using the
combined features from all best bases is also adopted as a
classifier for comparison. Section 5 contains the conclusions.

2. WPT, PROBABILISTIC NEURAL
NETWORKS AND DECISION FUSION

2.1 Feature extraction from wavelet packet basis

WPT has a discrete format which is popularly used in

engineering applications. To illustrate its underlying

mathematical theory briefly, we denote {4}, ¢ {g.},_, and

as the quadrature mircor filter banks. A signal can be

decomposed on the bases composed of functions of the form
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where j, k and n are the scale, time localization and oscillation
parameters, respectively. (1) is the scaling function
corresponding to a low-pass filter. The filtered signal is an
approximation. u(¢) is the wavelet function corresponding to
a high-pass filter. The filtered signal is a detail.

As the approximation and detail can be further sliced by
dyadic decomposition, it can be scen that WPT generates a
binary tree of bases. Each basis on the trec is indexed by a pair
of integers (, k). At the decomposition level j, there are 2/ - 1
bases. The binary tree of bases can also be considered to form
a 2-D time-frequency plane on which the signal information
distributed. The information in the bases is redundant along
two axes, ie., information in child bases are overlapped with
that in parent basis. It is preferable to select the best bases
from the binary tree, 5o as to reduce the effort in data analysis
without losing information.
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The common best basis is usually used to identify signals
‘which may come from different classes. For example, all
signals are decomposed on their wavelet packet trees. A
statistical measure of ‘distance” is applied to produce a unique
WPT-structured tree, from which the common best basis is
identified [7-8]. For condition monitoring, characteristic
‘wavelet packets can be selected based on statistical energy [9].
In current work, the unique WPT-structured tree was produced
by the measure of cluster distance and the best basis was
selected according to the Shannon entropy based criterion
[10}.

WPT creates opportunities for feature extraction and
feature combination due to the rich information presented in
the localized bases. Data mining, a convergence of knowledge
discovering techniques [11], can play an important role in the
extraction of features. Furthermore, the distributed best bases
provide local sites for DDM. Based on the features from each
best basis, local decisions can then be made by a classifier.
2.2 Probabilistic neural networks
Neural networks have been used successfully in pattern
recognition as classifiers [12]. Popular neural networks
include multilayer perception (MLP), radial basis networks
(RBN), probabilistic neural networks (PNN), and self-
organized maps (SOM). The PNN [13] is a special variant of
RBN, which has found applications in solving regression and
classification problems because it can be easily trained and
can tackle applications with relatively few training samples.

A typical architecture of PNN is shown in Figure 1. It
includes four layers. The first layer simply distributes the
input to the pattern layer. In the pattern layer, usually each
neuron corresponds to a training vector. The difference
between the pattern x and the training vector is calculated in
the neuron and then fed into a radial basis function, for which
a Gaussian function is often used. Thus the output of neuron
xyin the pattern laer is computed as
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where d denotes the dimension of the feature vector x, o is the
smoothing parameter, and m is the number of classes. The
summation layer neurons calculate the maximum likelihood
of pattern x and classify it into class €, by summarizing and
averaging the output of all neurons that belong to the same
class
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where N, denotes the total number of samples in class C, . The
probabilities given by Eq.(4) for each class are pooled in the
output layer. This provides a way to assess the confidence that
pattern x belongs to each class.

‘The PNN may include more neurons compared with ML
For example, the pattern layer may include as many neurons
as the number of training vectors. It may be noted that the
PNN structure includes the smoothing parameter and the
number of neurons, both of which can be optimized [14-15]

Input Patten  Summation  Output
Layer Layer Layer Layer

Figure 1. The architecture of a PNN

2.3 Decision fusion

Distributed data resources, such as distributed sensors, require
the integration of local information to generate a final
decision. The decision fusion technique improves the decision
accuracy in pattern classification. The present work employs
probabilistic neural networks for fault diagnosis. Local
decisions are derived from each best basis of wavelet packets,
which are then fused as a final decision at the classifier level
[16]. Different methods are available for decision fusion, such
as the weighted average method, winner-take-all principle,
Bayesian rule, and Dempster-Shafer’s method [17). The
weighted average method together with winner-take-all
principle was adopted in this work.

3. PROCEDURE TO IMPLEMENT
INTEGRATED FAULT DIAGNOSIS
The integrated fault diagnosis is based on vibration signal
analysis using WPT for feature extraction. PNN is used for
fault diagnosis on cach best basis after which the local
conclusions are fused. This procedure is implemented under a
uniform framework as shown in Figure 2. The framework
includes four parts in neural networks language: input layer,
signal processing and feature extraction layer, PNN layer and
decision fusion layer. Each part is explained as follows.
1) Signals arc presented at the input layer.
2) The second layer is for signal processing and feature
extraction. WPT is used to analyze the signals and n best
bases are searched. The feature vector extracted from
individual best basis is denoted as x. As mentioned above,
cach best basis is associated with a neural network for fault
classification.
For cach best basis, a PNN is employed to classify the
feature vectors. The output of the ith PNN is a vector
£=1R whose elements given by Eq. (4) indicate
how close the input is to each fault class.

4) The decision vectors from cach PNN are combined to be a
decision matrix #=[2,,2) of size m X n. If no strong
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evidence shows that some best bases are more sensitive to
the faults than the others, a weight vector in decision
fusion layer can be set as _

W= ones(m1) )
The decision fusion layer considers contributions from
each PNN output and generates a fused probability
(G| %) representing the class the pattern x belongs to.

P(C\D)=P*W, i=1;m ©

To make a final decision, we pick the maximum of the

probabilities from 7(C|x) and produce a 1 for that class

and a 0 for the other classes - the winner-take-all principle.
1 max(P(C|x))
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Figure 2. The integrated fault diagnosis framework

From the procedure, we note that all the necessary tasks
are placed under the one framework. Since WPT and PNN are
highly computational, they can be incorporated into an
automatic integrated fault diagnosis procedure.

4. A CASE STUDY

Rolling element bearings are key components in mechanical

systems. Their failures account for a large percentage of

breakdowns in rotating machinery. Some of them can be
" o8 e e - is on bearings

is therefore fundamental to maintaining the integrity of

mechanical systems.

Ready-made experimental data of rolling element bearing
faults from Case Western Reserve University were used to test
our methodology [18]. A single fault was introduced by
electro-discharge machining on the outer-race, inner-race and
ball, respectively. The collected data associated with the three
types of faults came from different working conditions, i.c.,
under different RPM and loads. This ensured that the data are
general in the sense that broad conditions are covered, which
benefits the generalization of classifiers.

We adopted relatively few samples for testing our
methodology. For example, in each fault class, 50 samples
were used for classifier training, while 50 samples were used
for classifier testing. Since three types of faults were involved,
this resulted in 300 samples.

Following the procedure in Section 3, the signals were first
decomposed by WPT up to level 3 by Db20 wavelets. Figure
3 illustrates a typical signal from a faulty outer-race and its
WPT. Figure 4 shows six common best bases selected by the
discriminate distance related Shannon entropy criterion for the
three signal classes.

3.0 (€]

Figure 3. WPT for an outer race signal
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Figure 4. Common best basis

For a specific best basis, we selected signal energy, signal
Kurtosis and their combinations as the features respectively.
The training and testing datasets consisted of 1-D or 2-D
feature vectors. The PNN with the smoothing parameter VS0
was used for each basis. The signals were then classified to
make the local decisions, which were further fused to reach a
final decision.

Table 1 provides the final classification results using the
proposed approach. It is found that when signal energy is
employed as the feature, all S0 testing signals in each class are
correctly classified. However, when kurtosis is used as the
feature, it leads to numerous misclassifications in each class.
Using kurtosis and energy feature also deteriorate the
classification results.

A feature vector can be constructed in that its elements
come from different best bases. Instead of using the DDM
approach, a global decision can be made based on this feature
vector. A classifier is again required. We adopted a
probabilistic neural network for comparison. For a signal, the
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Table 1. Diagnosis results

. Misclassification
Classifier |~ Feature
Outer Race| Inner Race | Ball
Fusion | Energy 0/50 0/50 0/50
Method | Kurtosis 18/50 18/50 13/50
Energy & | 1/50 0/50 1750
Kaurtosis
One PNN| Energy 250 0/50 2/50

signal energy in each best basis is concatenated into a feature
vector which then constructs the training and testing datasets.
‘The feature vector is 6-D since there are six best bases in the
case study. The probabilistic neural network uses the same
smoothing parameter V50 with results shown in Table 1. Two
misclassifications were recorded, i.e., for outer race and ball
signal faults respectively.

The evidence produced in Table 1 clearly shows that the
proposed approach is effective to conduct integrated fault
diagnosis. This novel method also has superior classification
capability than that using a single probabilistic neural
network.

5. CONCLUSIONS

‘This paper has presented an approach for the implementation
of an integrated machine fault diagnosis procedure based on
vibration signals alone. Local decisions are made from best
basis of signals’ wavelet packet transform. The tasks of signal
processing and feature extraction, local decision making and
on fusion are covered under one framework.

Probabilistic neural networks were used to classify
features extracted from each best basis. It was shown the PNN
accurately diagnosed faults in situations where relatively few
training vectors were available. The weighted average and
winner-take-all principles when applied in the case study were
also shown to be effective for decision fusion. Signal energy
as a feature extraction parameter was a good choice in bearing
fault diagnosis. Poor results were obtained when kurtosis was
used.

The fused decisions show that the proposed novel
approach achieved higher diagnosis accuracy than a single
probabilistic neural network based diagnosis.
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