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When an object is constrained to lie in a half-space bounded by a rigid horizontal wall, it will fall against this wall under the 
infl uence of gravity and then rebound in some way so as to execute oscillations which will gradually decay as energy is lost 
in the collisions.  Common cases are bouncing balls, rocking beams, and discs allowed to spin obliquely onto the surface.  In 
this last case, exemplifi ed by coins and saucepan lids, the resulting radiated sound has interesting properties.

1.  INTRODUCTION
Upon reflection, we are all familiar with the behaviour of a 
disc such as a coin or a saucepan lid dropped obliquely upon a 
table.  After a brief unstable wobble it settles into a controlled 
motion in which its tilt rotates rapidly in either a clockwise or 
anticlockwise direction and any pattern on the surface is seen 
to rotate very slowly in the same direction.  As the 
mechanical energy dies away over a few seconds the rotation 
rate of the slope angle speeds up but that of the surface 
pattern slows down.  This behaviour is coupled to the sound 
radiated from the disc, so that we hear a rather broadband 
sound, the frequency of which rises at first slowly and then 
rapidly as the disc settles to the table surface. 
 The physical principles underlying the behaviour of such 
an object, known as “Euler’s disc”, have been treated in 
several classical texts [1,2] but still attract attention even in 
journals as prominent as Nature [4,5].  My aim in the present 
short paper is to explain the behaviour of such a disc, to link it 
to that of other simpler constrained oscillators such as 
bounding balls and rocking beams, and then to examine the 
resulting acoustic excitation and radiation. 

2.  BOUNCING BALLS 

The simplest case to consider is that of an elastic ball dropped 
onto a flat surface.  The ball rebounds, but its rebound 
velocity is less than its impact velocity by a factor <1 known 
as the coefficient of restitution.  The rebound energy, and thus 
the rebound height, is therefore reduced by a factor  2.  If the 
rebound velocity is v, then cycle time until the next impact is 
2v/g, where g is the acceleration due to gravity.  After n
bounces, the bounce height has been reduced by a factor  2n

and the cycle time by a factor  n.  The impact frequency fn
after n rebounds has the value  
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where v0 is the initial release velocity and hn is the bounce 
height after the nth bounce.  From this it can be deduced, after 
a little algebra, that the oscillation actually ceases at a time t
after the first impact, where  
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in which h0 is the initial release height.  More importantly 
from our present viewpoint, the impact frequency varies as a 
function of time according to the equation 
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This result is shown in Figure 1, from which it is clear that 
the impact frequency rises at an increasing rate and actually 
becomes formally infinite just before the oscillation ceases at 
time t .  We shall see that some of these behavioural features 
apply at least qualitatively to all the gravitational oscillators 
we discuss.  A simple experiment with a super-elastic ball 
verifies the predictions of the model. 
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Figure 1: Calculated behaviour of (a) bounce frequency and (b) 
bounce height as functions of time after initial release for an 
elastic ball released from a height of 1m.  Assumed coefficient 
of restitution  is 0.96 and the value of t  is then 21.7s. 
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3. ROCKING BEAMS
We turn now to a rather more complex system consisting of a 
beam rocking on two symmetrically placed supporting ridges, 
as shown in Figure 2(c). To simplify the analysis the solid 
beam can be replaced by two point masses located 
symmetrically on a light beam as in (a) and (b), the beam also 
being symmetrically located relative to the two fulcra.  As an 
initial condition we suppose that the beam is in contact with 
just one fulcrum A, as in Figure 2(a), and is released from a 
stationary state inclined at an angle.  It is assumed that the 
beam does not slide on the fulcrum and remains in contact 
until the beam impacts on the other fulcrum B.  There are 
now impulsive vertical forces acting on the beam at its two 
points of contact and these serve both to reverse the sign of 
the motion of the centre of mass and also to change the speed 
of rotation of the bar.  Just what occurs then depends upon the 
ratio of the distance between the two fulcra and the distance 
between the two masses. 
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Figure 2: Simplified geometry of a beam rocking upon two 
symmetrically placed supports.  When the beam is in contact 
with only one support, as in (a), there is a non-impulsive force 
acting upon it, but when it contacts both supports, as in (b), 
there are impulsive forces G1 and G2 acting as well.  Panel (c) 
shows a more realistic situation for a beam of finite thickness.

 Analysis of the behaviour is straightforward but the results 
are simple and interesting.  Suppose that the mass of the beam 
and its attached masses is m, that its moment of inertia about 
the centre of mass is I, and that the distance between the two 
supporting fulcra is 2a.  Suppose also that the impacts are 
ideally elastic so that there is no loss of energy and let v1 and 

1 be the centre of mass velocity and the rotation velocity 
respectively just before impact, with v2 and 2 being the same 
quantities just after impact.  Then the impact equations can be 
solved to give 
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Several simple cases arise.  The first occurs if I = ma2,
which is the case for two simple masses on a light rod and 
separated by the same distance as separates the two fulcra, or 
for a uniform rod of length a 12  3.46a.  For these 
parameter values the motion simply reverses with v2 = –v1 and 

2 = – 1 and there is no impulse on fulcrum A.  This is the 
equivalent of finding the “sweet spot” for hitting a ball with a 
cricket bat or tennis racquet.  The other simple case occurs if I
= 3ma2, which can be achieved by a uniform beam of length 
6a, for then v2 = –2v1 and 2 = 0 so that the beam loses 
contact with both fulcra and simply bounces vertically, 
maintaining its horizontal orientation.  The beam can then 
continue to bounce up and down, remaining horizontal.  The 
only other really simple behaviour is that which occurs for the 
limiting case in which the beam length, or separation between 
the two masses in the simple case, is almost infinitely long 
compared with the fulcrum separation 2a.  In this case 
support of the beam is simply transferred from one fulcrum to 
the other and the beam continues to rotate in the same 
direction at the same angular speed until gravity causes the 
motion to reverse.  In all other cases, and particularly if ma2 < 
I < 3ma2, the motion involves bouncing contact on both the 
fulcra immediately after the initial impact.  Allowing a certain 
amount of energy loss upon impact blurs the distinctions a 
little, so that there is a small region around each parameter 
value in which its distinctive behaviour can be expressed. 
 There is one other significant result that emerges from the 
analysis, and this relates to the frequency of the rocking 
oscillations.  The equations are complicated but, for the long-
beam case in which contact is transferred repeatedly from one 
fulcrum to the other, the result is that for oscillations of small 
amplitude 
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where h = a sin is the maximum height reached by the 
centre of mass.  This is qualitatively similar to the result 
found for a bouncing ball in equation (1), with  f  h–1/2, so 
that the evolution of the oscillation frequency will follow 
essentially the same path as that shown in Figure 1(a) if there 
are fractional energy losses at each impact. 

4.  SPINNING DISCS 
After this preamble we come now to the main topic of this 
paper, the behaviour of a disc released at an angle onto a 
horizontal plane in such a way that it begins a spinning 
motion.  This could also be achieved either by initially rolling 
the disc along on its edge or by spinning it with its plane 
vertical.  The disc will then collapse into the behaviour to be 
considered here.  As noted in Section 1, the angle at which 
the disc is inclined to the support plane, and hence the point 
of contact, is observed to precess rapidly, while the disc itself 
rotates only slowly in the same angular sense.  We will now 
examine the processes by which this comes about and the 
consequences for vibration and sound radiation from the 
structures involved. 
 The physical situation and coordinates involved are both 
shown in Figure 3.  We take the radius of the disc to be a and 
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that of the contact circle to be r, the angular speed of rotation 
of the disc about its axis to be  and the rate of precession of 
the contact point on the plane to be .  Then the condition 
that there be no slipping at the contact point requires that r
= –a . The apparent rate of rotation of the pattern on the 
upper face of the disc is +  = (1–r/a), and this is 
observed to have the same direction as that of the rotation of 
the contact point, which implies that r < a.
 Understandably, analysis of the motion of the disc is 
rather complex, though essentially straightforward, since two 
coupled rotating motions must be considered as well as the 
stability of the height of the centre of mass above the plane.  
There are two ways of approaching this calculation.  The first, 
and more usually adopted, is based upon moments and 
rotational inertia, while the second splits the motion into two 
sinusoidal oscillations that are geometrically at right angles 
and temporally 90 degrees out of phase. The final result is the 
same in both cases and gives the rotational angular velocity of 
the point of contact of the disc on the supporting plane as 
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where = r – a cos   is the radius of the circle traced out by 
the centre of mass of the disc.  This is the result given by 
Ramsey [1], while Olsson [3] adds the assumption that = 0.  
In reality it seems that may vary with the initial conditions, 
since for a disc spinning in a vertical plane = 0 initially, 
while for a vertical rolling disc = .  When the disc motion 
collapses to its inclined-plane state, however, it seems that 
converges towards a standard value near zero.  Details have 
not yet been worked out. 
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Figure 3: (a) Elevation view of the precessing disc, showing the 
forces acting upon it, F being a frictional force.  (b) Plan view.  
C is the centre of the disc and O the centre of its circular contact 
path with the supporting plane, shown as a broken line.  F is a 
frictional force that prevents the disc from slipping. 

If is very much less than the disc radius a, then equation 
(7) shows that the angular rate of rotation  of the contact 
point between the disc and the plane becomes 
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where h is the height of the disc centre above the plane, while 
the visual rotation rate of the pattern on the disc becomes 
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If energy is lost, then from (8) the rotation rate of the disc 
increases as h–1/2, which is just the same behaviour found 
before in the case of bouncing balls or rocking beams and 
illustrated in Figure 1.  The visual rotation rate of the pattern, 
however, does not increase but rather, as shown in (9), 
decreases as h3/2.  Both these effects can be easily observed 
for a spinning coin or saucepan lid. 

5.  ACOUSTIC EFFECTS 
We come now to examine the vibrational interaction between 
the disc and the supporting plane and the way in which sound 
is generated and radiated.  These matters are simple in the 
case of a bouncing ball or a rocking beam, since the 
excitation consists of a series of impulses delivered to both 
the moving object and the supporting plane at a rate that 
increases with time in the manner illustrated in Figure 1.  For 
a spinning disc, however, there is simply a constant force mg
applied to the disc rim at a point, the position of which rotates 
at a speed given by equation (8).  
 If the supporting plane is very large so that reflections 
from its edges can be neglected, then radiated sound comes 
simply from the vibrational waves propagating away from the 
rotating source.  This gives a wave equation on the plane  of 
the form 
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where z is the displacement normal to the supporting plane, S
is the elastic stiffness of that plane, and (x–x0) is a Dirac 
delta function.  Formal solution of this equation is not simple, 
but it clearly leads to elastic waves propagating outwards 
from the place where the rotating disc is located.  These 
waves will not be exactly sinusoidal because of an effective 
Doppler shift as the contact point moves around the circle. 
 In the case of a coin, there is another matter to consider 
and this is the effect of the milled edge, which adds a high 
harmonic to the excitation.  A coin typically has about two 
milled grooves per millimetre on its circumference, which 
typically measures between 50 and 100 mm, so that we are 
dealing with an excitation frequency that is 100 to 200 times 
the coin rotation frequency, which brings it into the low 
kilohertz range.  However, since the duration of the rotation 
phase for a coin is brief, it is quite likely that it will spend 
much of this time in a transient state in which there may even 
be rebounds from the surface, which will add impulsive 
excitations.  A much larger disc, such as a saucepan lid, can 
be manipulated more easily into a stable rotating state and 
also maintains this state for much longer, so that it is easier to 
observe and hear. 
 Excitation of the disc itself is quite different, since it is a 
confined structure and generally has well-defined normal 
modes of the form mn = Rmn(r)cos n , or the sine equivalent, 
where mn has m nodal circles and n nodal diameters.  Since 
the excitation point applies a force mg and is moving round 
the free circumference of the disc with angular speed , it 
effectively applies an excitation force of frequency n  to 
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mode (m,n), so that the excitation is effective at quite a high 
frequency. While it would be possible to analyse this 
behaviour in detail, the problem is hardly of sufficient 
importance to warrant this.  This excitation signal sweeps 
upwards with time as the disc loses rotational energy and its 
centre of mass moves closer to the plane, as described by 
equation (8), and this is clearly audible. 
 Sound radiation from the rotating disc is complicated for 
several reasons.  The oscillating disc is itself a set of 
multipole sources, each of distinct order mn, which are all 
correlated in phase at the contact point.  The lower side of the 
disc, however, is shielded by the supporting plane and its 
oscillations are imposed upon the wedge of air between the 
disc and the plane, from where they radiate preferentially in a 
direction opposite to the contact point.  This imposes a rapid 
fluctuation on the sound in any given direction. 
 There is one other interesting resonance phenomenon that 
influences the sound radiation from a disc.  This comes from 
the fact that the air volume enclosed under the disc, and 
vented by the opening between it and the supporting plane, 
acts as a resonator, which may impose a sort of “vocal 
formant” on the radiated sound.  In the case of a domed disc, 
such as a saucepan lid, the resonance frequency f* is 
determined by the enclosed air volume V and the area S of the 
vent.  In such cases we can easily deduce the approximate 
relation 
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where c is the velocity of sound and d is the radiation “end 
correction” applicable to the opening.   This Helmholtz 
approximation is, however, valid only if the sound 
wavelength at frequency f* is large compared with the 
diameter of the disc.  For a domed disc such as found in a 
saucepan lid, the enclosed volume has the form V0 + h
where V0 is the volume of the dome itself and  is a constant.  
If h << V0, as will be the case when the disc has nearly 
settled, then since S is also proportional to h  while d tends to 
a small constant value, (11) predicts that f will be about 
proportional to h1/2 so that the formant frequency will 
decrease as the disc sinks towards the plane. 
 The situation for a plane disc is rather different, since the 
geometry of the air volume is simply reduced in the vertical 
direction as the disc settles, and this is rather analogous to 
changing the divergence angle of a conical horn, which has 
almost no effect on its resonance frequency.  We should 
expect this frequency to be a little less than c/2D where D is 
the diameter of the disc. 
 The behaviour of a domed lid rotating and settling over a 
period of about 5 seconds is illustrated in the sonogram of 
Figure 4. The lid itself was 13 cm in diameter and about 30 
mm in height at its centre, giving an enclosed volume of 
about 300 cm3.  Its material was steel about 0.3 mm in 
thickness.  The sound intensity occurs as pulses as the raised 
side of the disk rotates, initially at a frequency of about 7 Hz 
but then increasingly rapidly.  The lower dark band at about 
800 Hz is the formant described above, and it is clear that its 
frequency reduces slowly over most of the time before 
plunging fairly abruptly to zero in the final few tenths of a 

second.  The frequency of this band is close to what would be 
expected if the effective value of d, determined in this case by 
the aperture and the overhanging rim, is a few millimetres.
Some higher bands, particularly those at about 2.2 and 2.6 
kHz, are presumably resonances of the lid itself, and their 
frequency does not change with time.  Sonograms of the 
sound from a spinning plane disc show the same sort of time 
structure for disc revolution, but lack the low formant band, 
and all the frequency bands are constant with time. 

Figure 4:  Time-resolved spectral analysis of the sound from a 
domed metal lid rotating and settling upon a smooth hard plane.

6.  CONCLUSIONS 
This small study cannot claim any fundamental importance, 
but was an interesting diversion.  One striking thing to 
emerge was the uniformity of behaviour of the settling rate 
for bouncing balls, rocking beams, and spinning discs, all 
leading to a formal infinity in the oscillation rate after a finite 
time.  Because these objects are all things that we encounter 
from time to time in ordinary life, it is interesting to have 
some insight into their behaviour. 
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