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ABSTRACT: A model to describe the low frequency dynamic and acoustic responses of a submarine hull subject to a
harmonic propeller shaft excitation is presented. The submarine is modelled as a fluid-loaded, ring stiffened cylindrical shell
with internal bulkheads and end caps. The stiffeners are introduced using a smeared approach. The bulkheads are modelled
as circular plates and the end closures as truncated conical shells. The propeller introduces a harmonic axial force that is
transmitted to the hull through the shaft and results in excitation of the accordion modes only if the force is symmetrically
distributed to the hull. Structural and acoustic responses for the axisymmetric breathing modes are presented in terms of
frequency response functions of the axial and radial displacements and directivity patterns for the radiated sound pressure.

1. INTRODUCTION

Vibration modes of a submerged hull are excited from the
transmission of fluctuating forces through the shaft and thrust
bearings due to the propeller rotation. These low frequency
vibration modes of the hull can result in a high level of
radiated noise. A hull can be idealised as a finite cylinder
submerged in a fluid. The dynamic responses of cylindrical
shells has received much research attention, ranging from
the free vibrational characteristics of isotropic cylindrical
shells subject to various boundary conditions [1, 2], to
the effect of structural discontinuities such as stiffeners, a
junction or changes in diameter on the wave propagation
[3-5]. Thin cylindrical shells are often periodically stiffened
in order to both increase stiffness and strength and reduce
weight. Cylinders may be stiffened by circumferential rings,
longitudinal stringers or both, in which the stiffeners are
modelled as discrete elements [6-11] or their properties are
averaged over the surface of the shell [12]. For submerged
vessels, the effect of fluid loading on the structural and
acoustic responses of cylindrical shells have been investigated
[13-15].

In previous work by the authors [16], the submerged
body was modelled as a ring-stiffened cylindrical shell with
finite end closures and separated by bulkheads into a number
of compartments. Excitation from the propeller/propulsion
is idealised as an axial excitation acting at one end of the
hull. This gives rise to excitation of the hull axisymmetric
breathing modes associated with the zeroth circumferential
mode number (n=0). This paper expands on this previous
work to include the effect of end closures which are

modelled as truncated conical shells. The forced response
of the structure is calculated by solving the cylindrical shell
displacements in the form of a wave solution and the conical
shell in terms of a power series. An analytical expression for
the radiated sound pressure from the structure is presented
and accounts for the contributions from both the cylindrical
hull and the end caps. Once the radial displacement of
the structure is determined, the sound radiation in the far
field is evaluated by modelling the submarine as a slender
axisymmetric body for which the closed form solution of
the Helmholtz equation is possible. The radiating surface
is considered continuous. The scattering from the curvature
discontinuity at the junction between the cylindrical and
conical shells is neglected as well as the scattering at the
external plates closing the conical shells. At low frequencies
(<100 Hz), these effects are considered negligible.

2. DYNAMIC MODEL OF THE SUBMARINE
HULL

Cylindrical shell

The submarine is modelled as a fluid loaded cylindrical
shell with internal bulkheads and ring stiffeners. The hull is
closed by means of end plates and truncated conical shells.
The truncated cones are also closed at each end by circular
plates. The model is illustrated in Figure 1. The main part of
the submarine consists of a finite ring stiffened cylindrical
shell closed at each end by two circular plates. The hull is
partitioned into three parts by two equally spaced bulkheads.
The ring stiffeners are modelled using smeared theory [12].
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In Figure 2, u, v and w are the orthogonal components of
displacement in the x, 6 and z directions, respectively. a
is the mean radius of the cylindrical shell and / is the shell
thickness.

End cap Buikhead
Stiffener

Figure 1. Schematic diagram of the submarine.

Figure 2. Coordinate system and displacements
for a thin walled cylindrical shell.

Variation to the differential equations of motion for thin
cylindrical shells have been summarised by Leissa [1]. Fliigge
equations of motion were used and can be written in terms of
a differential operator L; by [17]
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The elements of the matrix differential operator L; used in
Egs. (1) to (3) according to the Fliigge theory can be found in
the Appendix. c¢;= [E/p(1-0)]" is the longitudinal wave
speed. E, p and v are respectively the Young’s modulus,
density and Poisson’s ratio of the cylinder. The external
pressure loading p due to the fluid acting normally to the
surface of the cylindrical shell can be approximated using an
infinite model and expressed in terms of a fluid loading
parameter £ by [18]
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where Q=au/c; is the non dimensional ring frequency, py is
the density of the fluid. H, is the Hankel function of order n
and H, is its derivative with respect to the argument. %, is the

radial wavenumber [18]. The general solutions to the
equations of motion can be written as
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where C,=U,/W,; and G,=V,/W,; k,; 1is the axial
wavenumber and 7 is the circumferential mode number.

End plates and bulkheads

The end plates and bulkheads were modelled as thin circular
plates in bending and in-plane motion. The axial w,, radial u,
and circumferential v, plate displacements are shown in
Figure 3. hy, is the plate thickness.

Figure 3. Displacements for a thin circular plate.

Displacements for the end plates and bulkheads can be
written as [3]
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where k,; is the plate bending wavenumber and k,r, k,; are
the wavenumbers for in-plane waves in the plate [3]. J,, I, are
respectively Bessel functions and modified Bessel functions
of the first kind. The coefficients 4,; and B,; (j=1,2) are
determined from the continuity equations at the cylinder/plate
junctions.

Conical shell

Dynamic modelling of the conical shells can be found in [19].
The displacement of the conical shell was described using a
power series solution following the procedure presented by
Tong [20]. The displacements and coordinate system for the
conical shell are shown in Figure 4, where u. and v, are
respectively the displacements of the shell’s middle surface
along the x. and @, directions. w, is the displacement normal
to the surface along the z. direction.
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Figure 4. Coordinate system for a thin truncated conical shell.

External fluid loading on the conical shell was taken into
account using a local cylindrical approximation which is
described in what follows. The conical shell is divided in
several narrow segments, as shown in Figure 5. The segments
are narrow enough to be considered as locally cylindrical in
order to account for the fluid loading; that is, the fluid loading
on the conical strip is considered the same acting on an
equivalent cylindrical shell with the same width and radius
R;. This approximation is only applicable to the calculation of
the fluid loading acting on a shell segment. To solve for
conical shell displacements, the equations of motion and
corresponding general solutions for a conical shell were used.
This method of accounting for the fluid loading acting on a
conical shell using a local cylindrical approximation is shown
to be reliable at low frequencies [19].
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Figure 5. Local approximation of the conical shell.

Propeller shaft excitation

The propeller force is transmitted to the edge of the
cylindrical section of the hull. The transmitted force can
be modelled as an axisymmetric distributed load given by
F=F,27za as shown in Figure 6. The distributed load excites
only the n=0 breathing modes.

Figure 6. Distributed force excitation of the hull.

The dynamic response of the submarine for each value of the
circumferential mode number » is expressed in terms of 4,,;
and B,,; (=1,2 for each circular plate) and W, ; (i=1:8 for each

section of the hull). The entire submarine is free-free. At the
cylinder/plate junctions, continuity of displacements and
equilibrium of forces/moments have to be satisfied. The
whole structure consists of three cylindrical shell segments,
six circular plates and two truncated conical shells. The
boundary and continuity equations can be arranged in matrix
form BX=F, where X is the vector of unknown coefficients
and F is the vector containing the external fluctuating forces
from the propeller. Once the unknown coefficients have been
determined the radial displacement of the hull can be
obtained.

3. FAR FIELD SOUND PRESSURE

After the radial displacement of the structure has been
determined, the far field sound pressure P can be evaluated
following the procedure presented by Skelton and James [21].
The submarine structure can be viewed as a slender body of
revolution. The cylindrical coordinate systems are (r, 6, z,)
for the exterior body and (v, 6, zy) on the surface of the

structure, as shown in Figure 7.
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Figure 7. Coordinate system for the far field point.

The angle f is defined by tanf=da,(z,)/ oz, where a, is the
radius of the structure at location z, and 2L, is the total length
of the structure. The displacement normal to the surface,
calculated solving the matrix BX=F, can be written as

Wy (1y,64,24) = E,OWN (%9, 2o) cos(nby) (12)

Considering a local approximation for the pressure near the
surface of the body, the sound pressure in the far field can be
calculated and expressed in polar coordinates by

jk R
wp .C e 0 "
P(R,4,,0.) = fz; go_j X, (k cosg,)cos(nd,)
(13)
where
L ‘
X, (kf cos ¢r) _ Ih ](7ar )Wn (ar 2 )ar (ZO )g_ﬂc‘[ cosdy-z( dZO

-L, wp ;C ; COS p
(14)
1(a,) =~kJ,(1a,)
H, (kfar cos B)(ycos fJ, (ya,) + jasin I, (ya,))
’ cos? BH,, (k ra, cos ) + jsin2 pH,(ksa, cos f)  (15)

kr is the acoustic wavenumber and ¢/ is the speed of sound in
the medium. The integral in Eq. (14) can be calculated by
considering separately the contribution of each section of the
submarine corresponding to the conical and cylindrical shells.
In this analysis, the surface is considered continuous.
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Scattering from the curvature discontinuity at the junction
between the cylindrical and conical shells and between the
cones and the external plates are neglected.

4. RESULTS

Numerical results are presented for a ring-stiffened steel
cylinder of radius ¢=3.25m, hull plate thickness #=0.04m,
length L=45m and with two evenly spaced bulkheads of
thickness 4,=0.04m. The end plates at each end of the
cylinder are also of thickness /,=0.04m. The conical end
enclosures are of dimensions #/:=0.014m, R;=0.50m,
Ry=3.25m, o=n/10rad. The material properties of steel are
density p=7800kgm™, Young’s modulus £=21x10""Nm™ and
Poisson’s ratio v=0.3. The stiffeners have a rectangular cross-
sectional area of 0.08m x 0.15m and are evenly spaced by
0.5m. The cylinder was submerged in water (pf:1000kgm'3).
The onboard equipment and ballast tanks are taken into
account considering a distributed mass on the shell of
meq=1500kgm"2. Internal structural damping was included in
the analysis using a structural loss factor of 0.02. The
submarine was excited with an axial force of unity amplitude
F,=1N applied to one end of the finite cylindrical shell. Only
the natural frequencies of the breathing modes defined by the
n=0 circumferential mode were excited, resulting in
axisymmetric motion of the hull. The structural results are
presented in terms of the frequency response function of the
axial and radial displacements at the ends of the cylindrical
section. The acoustic results are presented in terms of the
maximum sound pressure evaluated in the far field at 6, =0
and R=1000m.

Structural response

Figures 8 and 9 present the frequency response functions
(FRFs) of the axial and radial displacements at each end of
the cylindrical shell corresponding to x=0 and L. In Figure 8,
the main peaks occurring at 22.7, 45.4 and 67.9 Hz are the
first three resonant frequencies of the submarine for the
axisymmetric case (n=0 breathing modes). The small peaks
occurring at approximately 9 and 36 Hz are due to the
bulkheads. The bulkhead resonances are more evident in
Figure 9 which shows the radial displacement at each end of
the cylindrical shell. As the axisymmetric modes are mainly
axial in nature, the radial responses at the bulkhead natural
frequencies are comparable with the responses at the
resonances of the cylindrical shell.
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Figure 8. Frequency response of the axial displacement.
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Figure 9. Frequency response of the radial displacement.

The corresponding deformation shapes which are a
combination of axial and radial displacements are shown in
Figures 10 to 12 for the first three axisymmetric modes,
respectively. Different scales are used for the horizontal and
vertical axes in order to magnify the radial response. At the
first and third resonant frequencies of 22.7 and 67.9 Hz
respectively, the ends of the hull are vibrating out of phase
with each other. At the second resonant frequency (Figure
11), the ends of the hull are vibrating in phase. The accordion
motion of the hull results in large deformation in the axial
direction and only a small radial expansion of the central
cylindrical hull. The conical shells behave almost rigidly
except for a small deformation at the junctions between the
cylinder and end plates. The localised effect of the bulkheads
on the radial displacement is shown. The effect of the ring
stiffeners is not observed as the stiffeners were modelled
using orthotropic shell properties. In all figures of the
deformation shapes for the first three axisymmetric modes,
the contribution of the axial motion and thus the radiation
from the end cones result in the maximum values of the
radiated sound pressure.
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Figure 10. Deformation shape at the first #=0 natural frequency
of 22.7 Hz.
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Figure 11. Deformation shape at the second »n=0 natural
frequency of 45.4 Hz.
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Figure 12. Deformation shape at the third n=0 natural frequency
of 67.9 Hz.
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Acoustic response

Figure 13 presents the maximum radiated sound pressure,
which clearly shows the first three resonant frequencies of the
submarine for the axisymmetric case (n=0 breathing modes).
Small peaks due to the bulkheads are just visible. The
radiation directivity patterns in terms of the angle ¢ are
shown in Figures 14 to 16 for the first three axisymmetric
modes of the submarine, respectively. The contribution from
the cylindrical shell to the total radiated pressure is
represented by the central lobes in the directivity patterns.
The side lobes are due to the contribution from the end cones.
As the frequency increases, the radiation directivity increases
in complexity. For the first three resonances, there are one,
two and three central lobes, respectively. In Figure 14, the
directivity pattern shows that the contribution to the total
sound pressure from the cones results in large lobes in the
axial direction. A partial cancellation due to the pressure
radiated by the cylindrical section occurs in the direction
normal to the axis of the submarine. At the second natural
frequency, the cylindrical section assumes a sinusoidal shape
and its directivity pattern is bilobate. Similarly, at the third
resonance, the radiated pressure from the central cylindrical
shell is trilobite. As expected, the end cones determine the
maximum sound pressure since the axisymmetric modes are
mainly axial modes with little radial expansion.

5. CONCLUSIONS

An analytical model to study the low frequency structural and
acoustic responses of a submerged vessel has been presented.
Modelling of the submarine included several influencing
factors corresponding to ring stiffeners, bulkheads and fluid-
loading. The hull was closed by end plates and truncated
conical shells. The truncated cones were solved using a power
series solution whereas the hull was solved using a wave
solution. The excitation from the propeller shaft results in an
axisymmetric force distribution to the cylindrical hull which
excites only the accordion modes of zeroth circumferential
mode number. Results were presented in terms of frequency
responses at each end of the cylindrical hull and of the
maximum far field radiated sound pressure. Results were
also presented for the deformation shapes and corresponding
directivity patterns for the first three axisymmetric modes.
Future work will involve extending the analytical model to
include the effect of higher order circumferential modes, thus
allowing the individual contributions from the higher order
circumferential modes on the hull structural and acoustic
responses to be observed. Furthermore, the development of an
analytical model will allow the implementation of appropriate
active control strategies to be investigated.
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APPENDIX: Elements of the Fliigge differential operator

The elements of the matrix differential operator L; used in
Egs. (1) to (3) according to the Fliigge theory and modified to
take into account the internal ring stiffeners are given by [17]
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p is the thickness parameter. The ring stiffeners have cross
sectional area A4, b is the stiffener spacing and z, is the
distance between the shell mid-surface and the centroid of a

ring. G is the shear modulus, / is the area moment of inertia of

the stiffener about its centroid and J is the polar moment of

inertia of the cross sectional area. m,, is the equivalent -
distributed mass on the cylindrical shell to take into account

the onboard equipment and the ballast tanks.
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