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1. Introduction
Vibration modes of a submerged hull are excited from the 
transmission of fluctuating forces through the shaft and thrust 
bearings due to the propeller rotation. These low frequency 
vibration modes of the hull can result in a high level of 
radiated noise. A hull can be idealised as a finite cylinder 
submerged in a fluid. The dynamic responses of cylindrical 
shells has received much research attention, ranging from 
the free vibrational characteristics of isotropic cylindrical 
shells subject to various boundary conditions [1, 2], to 
the effect of structural discontinuities such as stiffeners, a 
junction or changes in diameter on the wave propagation 
[3-5]. Thin cylindrical shells are often periodically stiffened 
in order to both increase stiffness and strength and reduce 
weight. Cylinders may be stiffened by circumferential rings, 
longitudinal stringers or both, in which the stiffeners are 
modelled as discrete elements [6-11] or their properties are 
averaged over the surface of the shell [12]. For submerged 
vessels, the effect of fluid loading on the structural and 
acoustic responses of cylindrical shells have been investigated 
[13-15].

In previous work by the authors [16], the submerged 
body was modelled as a ring-stiffened cylindrical shell with 
finite end closures and separated by bulkheads into a number 
of compartments. Excitation from the propeller/propulsion 
is idealised as an axial excitation acting at one end of the 
hull. This gives rise to excitation of the hull axisymmetric 
breathing modes associated with the zeroth circumferential 
mode number (n=0). This paper expands on this previous 
work to include the effect of end closures which are 

modelled as truncated conical shells. The forced response 
of the structure is calculated by solving the cylindrical shell 
displacements in the form of a wave solution and the conical 
shell in terms of a power series. An analytical expression for 
the radiated sound pressure from the structure is presented 
and accounts for the contributions from both the cylindrical 
hull and the end caps. Once the radial displacement of 
the structure is determined, the sound radiation in the far 
field is evaluated by modelling the submarine as a slender 
axisymmetric body for which the closed form solution of 
the Helmholtz equation is possible. The radiating surface 
is considered continuous. The scattering from the curvature 
discontinuity at the junction between the cylindrical and 
conical shells is neglected as well as the scattering at the 
external plates closing the conical shells. At low frequencies 
(<100 Hz), these effects are considered negligible.

2. DYNAMIC MODEL OF THE SUBMARINE 
HULL

Cylindrical shell
The submarine is modelled as a fluid loaded cylindrical 
shell with internal bulkheads and ring stiffeners. The hull is 
closed by means of end plates and truncated conical shells. 
The truncated cones are also closed at each end by circular 
plates. The model is illustrated in Figure 1. The main part of 
the submarine consists of a finite ring stiffened cylindrical 
shell closed at each end by two circular plates. The hull is 
partitioned into three parts by two equally spaced bulkheads. 
The ring stiffeners are modelled using smeared theory [12]. 
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Figure 2. Coordinate system and displacements  
for a thin walled cylindrical shell.

Figure 3. Displacements for a thin circular plate.

In Figure 2, u, v and w are the orthogonal components of 
displacement in the x, θ and z directions, respectively. a 
is the mean radius of the cylindrical shell and h is the shell 
thickness.

Figure 1. Schematic diagram of the submarine.

2. DYNAMIC MODEL OF THE SUBMARINE HULL 
Cylindrical shell 
The submarine is modelled as a fluid loaded cylindrical shell with internal bulkheads and ring stiffeners. 
The hull is closed by means of end plates and truncated conical shells. The truncated cones are also 
closed at each end by circular plates. The model is illustrated in Figure 1. The main part of the 
submarine consists of a finite ring stiffened cylindrical shell closed at each end by two circular plates. 
The hull is partitioned into three parts by two equally spaced bulkheads. The ring stiffeners are modelled 
using smeared theory [12]. In Figure 2, u, v and w are the orthogonal components of displacement in the 
x,  and z directions, respectively. a is the mean radius of the cylindrical shell and h is the shell 
thickness.

Figure 1.    Schematic diagram of the submarine. 

Figure 2.    Coordinate system and displacements for a thin walled cylindrical shell. 

Variation to the differential equations of motion for thin cylindrical shells have been summarised by 
Leissa [1]. Flügge equations of motion were used and can be written in terms of a differential operator 

ijL  by [17] 

11 12 13 0L u L v L w                   (1) 

21 22 23 0L u L v L w                   (2) 

31 32 33 2 0
L

pL u L v L w
hc

                 (3) 

Stiffener 

End cap Bulkhead

L

h

a

u, x 
v, w, z 

2. DYNAMIC MODEL OF THE SUBMARINE HULL 
Cylindrical shell 
The submarine is modelled as a fluid loaded cylindrical shell with internal bulkheads and ring stiffeners. 
The hull is closed by means of end plates and truncated conical shells. The truncated cones are also 
closed at each end by circular plates. The model is illustrated in Figure 1. The main part of the 
submarine consists of a finite ring stiffened cylindrical shell closed at each end by two circular plates. 
The hull is partitioned into three parts by two equally spaced bulkheads. The ring stiffeners are modelled 
using smeared theory [12]. In Figure 2, u, v and w are the orthogonal components of displacement in the 
x,  and z directions, respectively. a is the mean radius of the cylindrical shell and h is the shell 
thickness.

Figure 1.    Schematic diagram of the submarine. 

Figure 2.    Coordinate system and displacements for a thin walled cylindrical shell. 

Variation to the differential equations of motion for thin cylindrical shells have been summarised by 
Leissa [1]. Flügge equations of motion were used and can be written in terms of a differential operator 

ijL  by [17] 

11 12 13 0L u L v L w                   (1) 

21 22 23 0L u L v L w                   (2) 

31 32 33 2 0
L

pL u L v L w
hc

                 (3) 

Stiffener 

End cap Bulkhead

L

h

a

u, x 
v, w, z 

Variation to the differential equations of motion for thin 
cylindrical shells have been summarised by Leissa [1]. Flügge 
equations of motion were used and can be written in terms of 
a differential operator ijL  by [17] 
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The elements of the matrix differential operator Lij used in 
Eqs. (1) to (3) according to the Flügge theory can be found in 
the Appendix. cL= [E/ (1- 2)]1/2 is the longitudinal wave 
speed. E,  and  are respectively the Young’s modulus, 
density and Poisson’s ratio of the cylinder. The external 
pressure loading p due to the fluid acting normally to the 
surface of the cylindrical shell can be approximated using an 
infinite model and expressed in terms of a fluid loading 
parameter FL by [18] 

2

2
L

L
hcp F w
a

            (4) 

2 ( )
( ) ( )

f n nr
L

nr n nr

H k aaF
h k a H k a

          (5) 

where = a/cL is the non dimensional ring frequency, f is 
the density of the fluid. Hn is the Hankel function of order n
and H n is its derivative with respect to the argument. knr is the 
radial wavenumber [18]. The general solutions to the 
equations of motion can be written as 
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where Cn,i=Un,i/Wn,i and Gn,i=Vn,i/Wn,i. kn,i is the axial 
wavenumber and n is the circumferential mode number. 

End plates and bulkheads 
The end plates and bulkheads were modelled as thin circular 
plates in bending and in-plane motion. The axial wp, radial up
and circumferential vp plate displacements are shown in 
Figure 3. hp is the plate thickness.  

Figure 3.    Displacements for a thin circular plate. 
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where kpB is the plate bending wavenumber and kpT, kpL are 
the wavenumbers for in-plane waves in the plate [3]. Jn, In are 
respectively Bessel functions and modified Bessel functions 
of the first kind. The coefficients An,j and Bn,j (j=1,2) are 
determined from the continuity equations at the cylinder/plate 
junctions. 

Conical shell 
Dynamic modelling of the conical shells can be found in [19]. 
The displacement of the conical shell was described using a 
power series solution following the procedure presented by 
Tong [20]. The displacements and coordinate system for the 
conical shell are shown in Figure 4, where uc and vc are 
respectively the displacements of the shell’s middle surface 
along the xc and c directions. wc is the displacement normal 
to the surface along the zc direction.  
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Displacements for the end plates and bulkheads can be 
written as [3] 
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where kpB is the plate bending wavenumber and kpT, kpL are 
the wavenumbers for in-plane waves in the plate [3]. Jn, In are 
respectively Bessel functions and modified Bessel functions 
of the first kind. The coefficients An,j and Bn,j (j=1,2) are 
determined from the continuity equations at the cylinder/plate 
junctions. 

Conical shell 
Dynamic modelling of the conical shells can be found in [19]. 
The displacement of the conical shell was described using a 
power series solution following the procedure presented by 
Tong [20]. The displacements and coordinate system for the 
conical shell are shown in Figure 4, where uc and vc are 
respectively the displacements of the shell’s middle surface 
along the xc and c directions. wc is the displacement normal 
to the surface along the zc direction.  
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Variation to the differential equations of motion for thin 
cylindrical shells have been summarised by Leissa [1]. Flügge 
equations of motion were used and can be written in terms of 
a differential operator ijL  by [17] 
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The elements of the matrix differential operator Lij used in 
Eqs. (1) to (3) according to the Flügge theory can be found in 
the Appendix. cL= [E/ (1- 2)]1/2 is the longitudinal wave 
speed. E,  and  are respectively the Young’s modulus, 
density and Poisson’s ratio of the cylinder. The external 
pressure loading p due to the fluid acting normally to the 
surface of the cylindrical shell can be approximated using an 
infinite model and expressed in terms of a fluid loading 
parameter FL by [18] 
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where = a/cL is the non dimensional ring frequency, f is 
the density of the fluid. Hn is the Hankel function of order n
and H n is its derivative with respect to the argument. knr is the 
radial wavenumber [18]. The general solutions to the 
equations of motion can be written as 
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where Cn,i=Un,i/Wn,i and Gn,i=Vn,i/Wn,i. kn,i is the axial 
wavenumber and n is the circumferential mode number. 

End plates and bulkheads 
The end plates and bulkheads were modelled as thin circular 
plates in bending and in-plane motion. The axial wp, radial up
and circumferential vp plate displacements are shown in 
Figure 3. hp is the plate thickness.  

Figure 3.    Displacements for a thin circular plate. 

Displacements for the end plates and bulkheads can be 
written as [3] 
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where kpB is the plate bending wavenumber and kpT, kpL are 
the wavenumbers for in-plane waves in the plate [3]. Jn, In are 
respectively Bessel functions and modified Bessel functions 
of the first kind. The coefficients An,j and Bn,j (j=1,2) are 
determined from the continuity equations at the cylinder/plate 
junctions. 

Conical shell 
Dynamic modelling of the conical shells can be found in [19]. 
The displacement of the conical shell was described using a 
power series solution following the procedure presented by 
Tong [20]. The displacements and coordinate system for the 
conical shell are shown in Figure 4, where uc and vc are 
respectively the displacements of the shell’s middle surface 
along the xc and c directions. wc is the displacement normal 
to the surface along the zc direction.  
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Variation to the differential equations of motion for thin 
cylindrical shells have been summarised by Leissa [1]. Flügge 
equations of motion were used and can be written in terms of 
a differential operator ijL  by [17] 

11 12 13 0L u L v L w             (1) 

21 22 23 0L u L v L w             (2) 
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The elements of the matrix differential operator Lij used in 
Eqs. (1) to (3) according to the Flügge theory can be found in 
the Appendix. cL= [E/ (1- 2)]1/2 is the longitudinal wave 
speed. E,  and  are respectively the Young’s modulus, 
density and Poisson’s ratio of the cylinder. The external 
pressure loading p due to the fluid acting normally to the 
surface of the cylindrical shell can be approximated using an 
infinite model and expressed in terms of a fluid loading 
parameter FL by [18] 
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where = a/cL is the non dimensional ring frequency, f is 
the density of the fluid. Hn is the Hankel function of order n
and H n is its derivative with respect to the argument. knr is the 
radial wavenumber [18]. The general solutions to the 
equations of motion can be written as 
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where Cn,i=Un,i/Wn,i and Gn,i=Vn,i/Wn,i. kn,i is the axial 
wavenumber and n is the circumferential mode number. 

End plates and bulkheads 
The end plates and bulkheads were modelled as thin circular 
plates in bending and in-plane motion. The axial wp, radial up
and circumferential vp plate displacements are shown in 
Figure 3. hp is the plate thickness.  

Figure 3.    Displacements for a thin circular plate. 

Displacements for the end plates and bulkheads can be 
written as [3] 
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where kpB is the plate bending wavenumber and kpT, kpL are 
the wavenumbers for in-plane waves in the plate [3]. Jn, In are 
respectively Bessel functions and modified Bessel functions 
of the first kind. The coefficients An,j and Bn,j (j=1,2) are 
determined from the continuity equations at the cylinder/plate 
junctions. 

Conical shell 
Dynamic modelling of the conical shells can be found in [19]. 
The displacement of the conical shell was described using a 
power series solution following the procedure presented by 
Tong [20]. The displacements and coordinate system for the 
conical shell are shown in Figure 4, where uc and vc are 
respectively the displacements of the shell’s middle surface 
along the xc and c directions. wc is the displacement normal 
to the surface along the zc direction.  
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Figure 4. Coordinate system for a thin truncated conical shell.

Figure 6  Distributed force excitation of the hull.

Figure 7. Coordinate system for the far field point.

Figure 5. Local approximation of the conical shell.

Displacements for the end plates and bulkheads can be written as [3] 
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where kpB is the plate bending wavenumber and kpT, kpL are the wavenumbers for in-plane waves in the 
plate [3]. Jn, In are respectively Bessel functions and modified Bessel functions of the first kind. The 
coefficients An,j and Bn,j (j=1,2) are determined from the continuity equations at the cylinder/plate 
junctions.

Conical shell 
Dynamic modelling of the conical shells can be found in [19]. The displacement of the conical shell was 
described using a power series solution following the procedure presented by Tong [20]. The 
displacements and coordinate system for the conical shell are shown in Figure 4, where uc and vc are 
respectively the displacements of the shell’s middle surface along the xc and c directions. wc is the 
displacement normal to the surface along the zc direction.

 Figure 4.   Coordinate system for a thin truncated conical shell. 

External fluid loading on the conical shell was taken into account using a local cylindrical 
approximation which is described in what follows. The conical shell is divided in several narrow 
segments, as shown in Figure 5. The segments are narrow enough to be considered as locally cylindrical 
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were used. This method of accounting for the fluid loading acting on a conical shell using a local 
cylindrical approximation is shown to be reliable at low frequencies [19]. 
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Propeller shaft excitation 
The propeller force is transmitted to the edge of the cylindrical section of the hull. The transmitted force 
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After the radial displacement of the structure has been determined, the far field sound pressure P can be 
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kf is the acoustic wavenumber and cf is the speed of sound in the medium. The integral in Eq. (14) can 
be calculated by considering separately the contribution of each section of the submarine corresponding 
to the conical and cylindrical shells. In this analysis, the surface is considered continuous. Scattering 
from the curvature discontinuity at the junction between the cylindrical and conical shells and between 
the cones and the external plates are neglected.

4. RESULTS 
Numerical results are presented for a ring-stiffened steel cylinder of radius a=3.25m, hull plate thickness 
h=0.04m, length L=45m and with two evenly spaced bulkheads of thickness hp=0.04m. The end plates 
at each end of the cylinder are also of thickness hp=0.04m. The conical end enclosures are of dimensions 
hc=0.014m, R1=0.50m, R2=3.25m, = /10rad. The material properties of steel are density =7800kgm-3,
Young’s modulus E=21x10-12Nm-2 and Poisson’s ratio =0.3. The stiffeners have a rectangular cross-
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 Figure 4.   Coordinate system for a thin truncated conical 
shell. 

External fluid loading on the conical shell was taken into 
account using a local cylindrical approximation which is 
described in what follows. The conical shell is divided in 
several narrow segments, as shown in Figure 5. The segments 
are narrow enough to be considered as locally cylindrical in 
order to account for the fluid loading; that is, the fluid loading 
on the conical strip is considered the same acting on an 
equivalent cylindrical shell with the same width and radius  
Ri. This approximation is only applicable to the calculation of 
the fluid loading acting on a shell segment. To solve for 
conical shell displacements, the equations of motion and 
corresponding general solutions for a conical shell were used. 
This method of accounting for the fluid loading acting on a 
conical shell using a local cylindrical approximation is shown 
to be reliable at low frequencies [19]. 

Figure 5. Local approximation of the conical shell. 

Propeller shaft excitation 
The propeller force is transmitted to the edge of the 
cylindrical section of the hull. The transmitted force can  
be modelled as an axisymmetric distributed load given by 
F=Fo/2 a as shown in Figure 6. The distributed load excites 
only the n=0 breathing modes. 

Figure 6.    Distributed force excitation of the hull. 

The dynamic response of the submarine for each value of the 
circumferential mode number n is expressed in terms of An,j
and Bn,j (j=1,2 for each circular plate) and Wn.i (i=1:8 for each 
section of the hull). The entire submarine is free-free. At the 
cylinder/plate junctions, continuity of displacements and 

equilibrium of forces/moments have to be satisfied. The 
whole structure consists of three cylindrical shell segments, 
six circular plates and two truncated conical shells. The 
boundary and continuity equations can be arranged in matrix 
form BX=F, where X is the vector of unknown coefficients 
and F is the vector containing the external fluctuating forces 
from the propeller. Once the unknown coefficients have been 
determined the radial displacement of the hull can be 
obtained. 

3. FAR FIELD SOUND PRESSURE 
After the radial displacement of the structure has been 
determined, the far field sound pressure P can be evaluated 
following the procedure presented by Skelton and James [21]. 
The submarine structure can be viewed as a slender body of 
revolution. The cylindrical coordinate systems are (r, r, zr)
for the exterior body and (r0, 0, z0) on the surface of the 
structure, as shown in Figure 7.   

Figure 7.   Coordinate system for the far field point. 

The angle  is defined by tan = ar(zr)/ zr where ar is the 
radius of the structure at location zr and 2Lh is the total length 
of the structure. The displacement normal to the surface, 
calculated solving the matrix BX=F, can be written as 
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Considering a local approximation for the pressure near the 
surface of the body, the sound pressure in the far field can be 
calculated and expressed in polar coordinates by 
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kf is the acoustic wavenumber and cf is the speed of sound in 
the medium. The integral in Eq. (14) can be calculated by 
considering separately the contribution of each section of the 
submarine corresponding to the conical and cylindrical shells. 
In this analysis, the surface is considered continuous. 
Scattering from the curvature discontinuity at the junction 
between the cylindrical and conical shells and between the 
cones and the external plates are neglected.

4. RESULTS 
Numerical results are presented for a ring-stiffened steel 
cylinder of radius a=3.25m, hull plate thickness h=0.04m, 
length L=45m and with two evenly spaced bulkheads of 
thickness hp=0.04m. The end plates at each end of the 
cylinder are also of thickness hp=0.04m. The conical end 
enclosures are of dimensions hc=0.014m, R1=0.50m, 
R2=3.25m, = /10rad. The material properties of steel are 
density =7800kgm-3, Young’s modulus E=21x1011Nm-2 and 
Poisson’s ratio =0.3. The stiffeners have a rectangular cross-
sectional area of 0.08m x 0.15m and are evenly spaced by 
0.5m. The cylinder was submerged in water ( f =1000kgm-3).
The onboard equipment and ballast tanks are taken into 
account considering a distributed mass on the shell of 
meq=1500kgm-2. Internal structural damping was included in 
the analysis using a structural loss factor of 0.02. The 
submarine was excited with an axial force of unity amplitude 
Fo=1N applied to one end of the finite cylindrical shell. Only 
the natural frequencies of the breathing modes defined by the 
n=0 circumferential mode were excited, resulting in 
axisymmetric motion of the hull. The structural results are 
presented in terms of the frequency response function of the 
axial and radial displacements at the ends of the cylindrical 
section. The acoustic results are presented in terms of the 
maximum sound pressure evaluated in the far field at r =0
and R=1000m. 

Structural response
Figures 8 and 9 present the frequency response functions 
(FRFs) of the axial and radial displacements at each end of 
the cylindrical shell corresponding to x=0 and L. In Figure 8, 
the main peaks occurring at 22.7, 45.4 and 67.9 Hz are the 
first three resonant frequencies of the submarine for the 
axisymmetric case (n=0 breathing modes). The small peaks 
occurring at approximately 9 and 36 Hz are due to the 
bulkheads. The bulkhead resonances are more evident in 
Figure 9 which shows the radial displacement at each end of 
the cylindrical shell. As the axisymmetric modes are mainly 
axial in nature, the radial responses at the bulkhead natural 
frequencies are comparable with the responses at the 
resonances of the cylindrical shell.
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Figure 8.    Frequency response of the axial displacement. 
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Figure 9.    Frequency response of the radial displacement. 
The corresponding deformation shapes which are a 
combination of axial and radial displacements are shown in 
Figures 10 to 12 for the first three axisymmetric modes, 
respectively. Different scales are used for the horizontal and 
vertical axes in order to magnify the radial response. At the 
first and third resonant frequencies of 22.7 and 67.9 Hz 
respectively, the ends of the hull are vibrating out of phase 
with each other. At the second resonant frequency (Figure 
11), the ends of the hull are vibrating in phase. The accordion 
motion of the hull results in large deformation in the axial 
direction and only a small radial expansion of the central 
cylindrical hull. The conical shells behave almost rigidly 
except for a small deformation at the junctions between the 
cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring 
stiffeners is not observed as the stiffeners were modelled 
using orthotropic shell properties. In all figures of the 
deformation shapes for the first three axisymmetric modes, 
the contribution of the axial motion and thus the radiation 
from the end cones result in the maximum values of the 
radiated sound pressure. 

 Figure 4.   Coordinate system for a thin truncated conical 
shell. 

External fluid loading on the conical shell was taken into 
account using a local cylindrical approximation which is 
described in what follows. The conical shell is divided in 
several narrow segments, as shown in Figure 5. The segments 
are narrow enough to be considered as locally cylindrical in 
order to account for the fluid loading; that is, the fluid loading 
on the conical strip is considered the same acting on an 
equivalent cylindrical shell with the same width and radius Ri.
This approximation is only applicable to the calculation of the 
fluid loading acting on a shell segment. To solve for conical 
shell displacements, the equations of motion and 
corresponding general solutions for a conical shell were used. 
This method of accounting for the fluid loading acting on a 
conical shell using a local cylindrical approximation is shown 
to be reliable at low frequencies [19]. 

Figure 5. Local approximation of the conical shell. 

Propeller shaft excitation 
The propeller force is transmitted to the edge of the 
cylindrical section of the hull. The transmitted force can be 
modelled as an axisymmetric distributed load given by 
F=Fo/2 a as shown in Figure 6. The distributed load excites 
only the n=0 breathing modes. 

Figure 6.    Distributed force excitation of the hull. 

The dynamic response of the submarine for each value of the 
circumferential mode number n is expressed in terms of An,j
and Bn,j ( j=1,2 for each circular plate) and Wn.i ( i=1:8 for 
each section of the hull). The entire submarine is free-free. At 
the cylinder/plate junctions, continuity of displacements and 

equilibrium of forces/moments have to be satisfied. The 
whole structure consists of three cylindrical shell segments, 
six circular plates and two truncated conical shells. The 
boundary and continuity equations can be arranged in matrix 
form BX=F, where X is the vector of unknown coefficients 
and F is the vector containing the external fluctuating forces 
from the propeller. Once the unknown coefficients have been 
determined the radial displacement of the hull can be 
obtained. 

3. FAR FIELD SOUND PRESSURE 
After the radial displacement of the structure has been 
determined, the far field sound pressure P can be evaluated 
following the procedure presented by Skelton and James [21]. 
The submarine structure can be viewed as a slender body of 
revolution. The cylindrical coordinate systems are (r, r, zr)
for the exterior body and (r0, 0, z0) on the surface of the 
structure, as shown in Figure 7.   

Figure 7.   Coordinate system for the far field point. 

The angle  is defined by tan = ar(zr)/ zr where ar is the 
radius of the structure at location zr and 2Lh is the total length 
of the structure. The displacement normal to the surface, 
calculated solving the matrix BX=F, can be written as 
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Considering a local approximation for the pressure near the 
surface of the body, the sound pressure in the far field can be 
calculated and expressed in polar coordinates by 
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sectional area of 0.08m x 0.15m and are evenly spaced by 0.5m. The cylinder was submerged in water 
( f =1000kgm-3). The onboard equipment and ballast tanks are taken into account considering a 
distributed mass on the shell of meq=1500kgm-2. Internal structural damping was included in the analysis 
using a structural loss factor of 0.02. The submarine was excited with an axial force of unity amplitude 
Fo=1N applied to one end of the finite cylindrical shell. Only the natural frequencies of the breathing 
modes defined by the n=0 circumferential mode were excited, resulting in axisymmetric motion of the 
hull. The structural results are presented in terms of the frequency response function of the axial and 
radial displacements at the ends of the cylindrical section. The acoustic results are presented in terms of 
the maximum sound pressure evaluated in the far field at =0 and R=1000m. 

Structural response
Figures 8 and 9 present the frequency response functions (FRFs) of the axial and radial displacements at 
each end of the cylindrical shell corresponding to x=0 and L. In Figure 8, the main peaks occurring at 
22.7, 45.4 and 67.9 Hz are the first three resonant frequencies of the submarine for the axisymmetric 
case (n=0 breathing modes). The small peaks occurring at approximately 9 and 36 Hz are due to the 
bulkheads. The bulkhead resonances are more evident in Figure 9 which shows the radial displacement 
at each end of the cylindrical shell. As the axisymmetric modes are mainly axial in nature, the radial 
responses at the bulkhead natural frequencies are comparable with the responses at the resonances of the 
cylindrical shell.
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Figure 8.    Frequency response of the axial displacement. 
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Figure 9.    Frequency response of the radial displacement. 

Figure 8. Frequency response of the axial displacement.
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kf is the acoustic wavenumber and cf is the speed of sound in 
the medium. The integral in Eq. (14) can be calculated by 
considering separately the contribution of each section of the 
submarine corresponding to the conical and cylindrical shells. 
In this analysis, the surface is considered continuous. 
Scattering from the curvature discontinuity at the junction 
between the cylindrical and conical shells and between the 
cones and the external plates are neglected.

4. RESULTS 
Numerical results are presented for a ring-stiffened steel 
cylinder of radius a=3.25m, hull plate thickness h=0.04m, 
length L=45m and with two evenly spaced bulkheads of 
thickness hp=0.04m. The end plates at each end of the 
cylinder are also of thickness hp=0.04m. The conical end 
enclosures are of dimensions hc=0.014m, R1=0.50m, 
R2=3.25m, = /10rad. The material properties of steel are 
density =7800kgm-3, Young’s modulus E=21x10-12Nm-2 and 
Poisson’s ratio =0.3. The stiffeners have a rectangular cross-
sectional area of 0.08m x 0.15m and are evenly spaced by 
0.5m. The cylinder was submerged in water ( f =1000kgm-3).
The onboard equipment and ballast tanks are taken into 
account considering a distributed mass on the shell of 
meq=1500kgm-2. Internal structural damping was included in 
the analysis using a structural loss factor of 0.02. The 
submarine was excited with an axial force of unity amplitude 
Fo=1N applied to one end of the finite cylindrical shell. Only 
the natural frequencies of the breathing modes defined by the 
n=0 circumferential mode were excited, resulting in 
axisymmetric motion of the hull. The structural results are 
presented in terms of the frequency response function of the 
axial and radial displacements at the ends of the cylindrical 
section. The acoustic results are presented in terms of the 
maximum sound pressure evaluated in the far field at =0 and 
R=1000m. 

Structural response
Figures 8 and 9 present the frequency response functions 
(FRFs) of the axial and radial displacements at each end of 
the cylindrical shell corresponding to x=0 and L. In Figure 8, 
the main peaks occurring at 22.7, 45.4 and 67.9 Hz are the 
first three resonant frequencies of the submarine for the 
axisymmetric case (n=0 breathing modes). The small peaks 
occurring at approximately 9 and 36 Hz are due to the 
bulkheads. The bulkhead resonances are more evident in 
Figure 9 which shows the radial displacement at each end of 
the cylindrical shell. As the axisymmetric modes are mainly 
axial in nature, the radial responses at the bulkhead natural 
frequencies are comparable with the responses at the 
resonances of the cylindrical shell.
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Figure 8.    Frequency response of the axial displacement. 
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Figure 9.    Frequency response of the radial displacement. 
The corresponding deformation shapes which are a 
combination of axial and radial displacements are shown in 
Figures 10 to 12 for the first axisymmetric modes, 
respectively. Different scales are used for the horizontal and 
vertical axes in order to magnify the radial response. At the 
first and third resonant frequencies of 22.7 and 67.9 Hz 
respectively, the ends of the hull are vibrating out of phase 
with each other. At the second resonant frequency (Figure 
11), the ends of the hull are vibrating in phase. The accordion 
motion of the hull results in large deformation in the axial 
direction and only a small radial expansion of the central 
cylindrical hull. The conical shells behave almost rigidly 
except for a small deformation at the junctions between the 
cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring 
stiffeners is not observed as the stiffeners were modelled 
using orthotropic shell properties. In all figures of the 
deformation shapes for the first three axisymmetric modes, 
the contribution of the axial motion and thus the radiation 
from the end cones result in the maximum values of the 
radiated sound pressure. 

Figure 9. Frequency response of the radial displacement.

Figure 10. Deformation shape at the first n=0 natural frequency 
of 22.7 Hz.

Figure 11. Deformation shape at the second n=0 natural 
frequency of 45.4 Hz.

Figure 12. Deformation shape at the third n=0 natural frequency 
of 67.9 Hz.
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kf is the acoustic wavenumber and cf is the speed of sound in 
the medium. The integral in Eq. (14) can be calculated by 
considering separately the contribution of each section of the 
submarine corresponding to the conical and cylindrical shells. 
In this analysis, the surface is considered continuous. 
Scattering from the curvature discontinuity at the junction 
between the cylindrical and conical shells and between the 
cones and the external plates are neglected.

4. RESULTS 
Numerical results are presented for a ring-stiffened steel 
cylinder of radius a=3.25m, hull plate thickness h=0.04m, 
length L=45m and with two evenly spaced bulkheads of 
thickness hp=0.04m. The end plates at each end of the 
cylinder are also of thickness hp=0.04m. The conical end 
enclosures are of dimensions hc=0.014m, R1=0.50m, 
R2=3.25m, = /10rad. The material properties of steel are 
density =7800kgm-3, Young’s modulus E=21x1011Nm-2 and 
Poisson’s ratio =0.3. The stiffeners have a rectangular cross-
sectional area of 0.08m x 0.15m and are evenly spaced by 
0.5m. The cylinder was submerged in water ( f =1000kgm-3).
The onboard equipment and ballast tanks are taken into 
account considering a distributed mass on the shell of 
meq=1500kgm-2. Internal structural damping was included in 
the analysis using a structural loss factor of 0.02. The 
submarine was excited with an axial force of unity amplitude 
Fo=1N applied to one end of the finite cylindrical shell. Only 
the natural frequencies of the breathing modes defined by the 
n=0 circumferential mode were excited, resulting in 
axisymmetric motion of the hull. The structural results are 
presented in terms of the frequency response function of the 
axial and radial displacements at the ends of the cylindrical 
section. The acoustic results are presented in terms of the 
maximum sound pressure evaluated in the far field at r =0
and R=1000m. 

Structural response
Figures 8 and 9 present the frequency response functions 
(FRFs) of the axial and radial displacements at each end of 
the cylindrical shell corresponding to x=0 and L. In Figure 8, 
the main peaks occurring at 22.7, 45.4 and 67.9 Hz are the 
first three resonant frequencies of the submarine for the 
axisymmetric case (n=0 breathing modes). The small peaks 
occurring at approximately 9 and 36 Hz are due to the 
bulkheads. The bulkhead resonances are more evident in 
Figure 9 which shows the radial displacement at each end of 
the cylindrical shell. As the axisymmetric modes are mainly 
axial in nature, the radial responses at the bulkhead natural 
frequencies are comparable with the responses at the 
resonances of the cylindrical shell.
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Figure 8.    Frequency response of the axial displacement. 
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Figure 9.    Frequency response of the radial displacement. 
The corresponding deformation shapes which are a 
combination of axial and radial displacements are shown in 
Figures 10 to 12 for the first three axisymmetric modes, 
respectively. Different scales are used for the horizontal and 
vertical axes in order to magnify the radial response. At the 
first and third resonant frequencies of 22.7 and 67.9 Hz 
respectively, the ends of the hull are vibrating out of phase 
with each other. At the second resonant frequency (Figure 
11), the ends of the hull are vibrating in phase. The accordion 
motion of the hull results in large deformation in the axial 
direction and only a small radial expansion of the central 
cylindrical hull. The conical shells behave almost rigidly 
except for a small deformation at the junctions between the 
cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring 
stiffeners is not observed as the stiffeners were modelled 
using orthotropic shell properties. In all figures of the 
deformation shapes for the first three axisymmetric modes, 
the contribution of the axial motion and thus the radiation 
from the end cones result in the maximum values of the 
radiated sound pressure. 
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The corresponding deformation shapes which are a combination of axial and radial displacements are 
shown in Figures 10 to 12 for the first axisymmetric modes, respectively. Different scales are used for 
the horizontal and vertical axes in order to magnify the radial response. At the first and third resonant 
frequencies of 22.7 and 67.9 Hz respectively, the ends of the hull are vibrating out of phase with each 
other. At the second resonant frequency (Figure 11), the ends of the hull are vibrating in phase. The 
accordion motion of the hull results in large deformation in the axial direction and only a small radial 
expansion of the central cylindrical hull. The conical shells behave almost rigidly except for a small 
deformation at the junctions between the cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring stiffeners is not observed as the stiffeners 
were modelled using orthotropic shell properties. In all figures of the deformation shapes for the first 
three axisymmetric modes, the contribution of the axial motion and thus the radiation from the end 
cones result in the maximum values of the radiated sound pressure. 
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Figure 10.    Deformation shape at the first n=0 natural frequency of 22.7 Hz. 
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Figure 11.    Deformation shape at the second n=0 natural frequency of 45.4 Hz. 
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Figure 12.    Deformation shape at the third n=0 natural frequency of 67.9 Hz. 

Acoustic response 
Figure 13 presents the maximum radiated sound pressure, which clearly shows the first three resonant 
frequencies of the submarine for the axisymmetric case (n=0 breathing modes). Small peaks due to the 
bulkheads are just visible. The radiation directivity patterns in terms of the angle r are shown in Figures 
14 to 16 for the first three axisymmetric modes of the submarine, respectively. The contribution from 
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Figure 8.    Frequency response of the axial displacement. 
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kf is the acoustic wavenumber and cf is the speed of sound in 
the medium. The integral in Eq. (14) can be calculated by 
considering separately the contribution of each section of the 
submarine corresponding to the conical and cylindrical shells. 
In this analysis, the surface is considered continuous. 
Scattering from the curvature discontinuity at the junction 
between the cylindrical and conical shells and between the 
cones and the external plates are neglected.

4. RESULTS 
Numerical results are presented for a ring-stiffened steel 
cylinder of radius a=3.25m, hull plate thickness h=0.04m, 
length L=45m and with two evenly spaced bulkheads of 
thickness hp=0.04m. The end plates at each end of the 
cylinder are also of thickness hp=0.04m. The conical end 
enclosures are of dimensions hc=0.014m, R1=0.50m, 
R2=3.25m, = /10rad. The material properties of steel are 
density =7800kgm-3, Young’s modulus E=21x1011Nm-2 and 
Poisson’s ratio =0.3. The stiffeners have a rectangular cross-
sectional area of 0.08m x 0.15m and are evenly spaced by 
0.5m. The cylinder was submerged in water ( f =1000kgm-3).
The onboard equipment and ballast tanks are taken into 
account considering a distributed mass on the shell of 
meq=1500kgm-2. Internal structural damping was included in 
the analysis using a structural loss factor of 0.02. The 
submarine was excited with an axial force of unity amplitude 
Fo=1N applied to one end of the finite cylindrical shell. Only 
the natural frequencies of the breathing modes defined by the 
n=0 circumferential mode were excited, resulting in 
axisymmetric motion of the hull. The structural results are 
presented in terms of the frequency response function of the 
axial and radial displacements at the ends of the cylindrical 
section. The acoustic results are presented in terms of the 
maximum sound pressure evaluated in the far field at r =0
and R=1000m. 

Structural response
Figures 8 and 9 present the frequency response functions 
(FRFs) of the axial and radial displacements at each end of 
the cylindrical shell corresponding to x=0 and L. In Figure 8, 
the main peaks occurring at 22.7, 45.4 and 67.9 Hz are the 
first three resonant frequencies of the submarine for the 
axisymmetric case (n=0 breathing modes). The small peaks 
occurring at approximately 9 and 36 Hz are due to the 
bulkheads. The bulkhead resonances are more evident in 
Figure 9 which shows the radial displacement at each end of 
the cylindrical shell. As the axisymmetric modes are mainly 
axial in nature, the radial responses at the bulkhead natural 
frequencies are comparable with the responses at the 
resonances of the cylindrical shell.
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Figure 9.    Frequency response of the radial displacement. 
The corresponding deformation shapes which are a 
combination of axial and radial displacements are shown in 
Figures 10 to 12 for the first three axisymmetric modes, 
respectively. Different scales are used for the horizontal and 
vertical axes in order to magnify the radial response. At the 
first and third resonant frequencies of 22.7 and 67.9 Hz 
respectively, the ends of the hull are vibrating out of phase 
with each other. At the second resonant frequency (Figure 
11), the ends of the hull are vibrating in phase. The accordion 
motion of the hull results in large deformation in the axial 
direction and only a small radial expansion of the central 
cylindrical hull. The conical shells behave almost rigidly 
except for a small deformation at the junctions between the 
cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring 
stiffeners is not observed as the stiffeners were modelled 
using orthotropic shell properties. In all figures of the 
deformation shapes for the first three axisymmetric modes, 
the contribution of the axial motion and thus the radiation 
from the end cones result in the maximum values of the 
radiated sound pressure. 
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frequency of 67.9 Hz. 

Acoustic response 
Figure 13 presents the maximum radiated sound pressure, 
which clearly shows the first three resonant frequencies of the 
submarine for the axisymmetric case (n=0 breathing modes). 
Small peaks due to the bulkheads are just visible. The 
radiation directivity patterns in terms of the angle r are 
shown in Figures 14 to 16 for the first three axisymmetric 
modes of the submarine, respectively. The contribution from 
the cylindrical shell to the total radiated pressure is 
represented by the central lobes in the directivity patterns. 
The side lobes are due to the contribution from the end cones. 
As the frequency increases, the radiation directivity increases 
in complexity. For the first three resonances, there are one, 
two and three central lobes, respectively. In Figure 14, the 
directivity pattern shows that the contribution to the total 
sound pressure from the cones results in large lobes in the 
axial direction. A partial cancellation due to the pressure 
radiated by the cylindrical section occurs in the direction 
normal to the axis of the submarine. At the second natural 
frequency, the cylindrical section assumes a sinusoidal shape 
and its directivity pattern is bilobate. Similarly, at the third 
resonance, the radiated pressure from the central cylindrical 

shell is trilobite. As expected, the end cones determine the 
maximum sound pressure since the axisymmetric modes are 
mainly axial modes with little radial expansion. 
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Figure 15.    Directivity pattern at the second n=0 natural 
frequency of 45.4 Hz. 

The corresponding deformation shapes which are a combination of axial and radial displacements are 
shown in Figures 10 to 12 for the first axisymmetric modes, respectively. Different scales are used for 
the horizontal and vertical axes in order to magnify the radial response. At the first and third resonant 
frequencies of 22.7 and 67.9 Hz respectively, the ends of the hull are vibrating out of phase with each 
other. At the second resonant frequency (Figure 11), the ends of the hull are vibrating in phase. The 
accordion motion of the hull results in large deformation in the axial direction and only a small radial 
expansion of the central cylindrical hull. The conical shells behave almost rigidly except for a small 
deformation at the junctions between the cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring stiffeners is not observed as the stiffeners 
were modelled using orthotropic shell properties. In all figures of the deformation shapes for the first 
three axisymmetric modes, the contribution of the axial motion and thus the radiation from the end 
cones result in the maximum values of the radiated sound pressure. 
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bulkheads are just visible. The radiation directivity patterns in terms of the angle r are shown in Figures 
14 to 16 for the first three axisymmetric modes of the submarine, respectively. The contribution from 

The corresponding deformation shapes which are a combination of axial and radial displacements are 
shown in Figures 10 to 12 for the first axisymmetric modes, respectively. Different scales are used for 
the horizontal and vertical axes in order to magnify the radial response. At the first and third resonant 
frequencies of 22.7 and 67.9 Hz respectively, the ends of the hull are vibrating out of phase with each 
other. At the second resonant frequency (Figure 11), the ends of the hull are vibrating in phase. The 
accordion motion of the hull results in large deformation in the axial direction and only a small radial 
expansion of the central cylindrical hull. The conical shells behave almost rigidly except for a small 
deformation at the junctions between the cylinder and end plates. The localised effect of the bulkheads 
on the radial displacement is shown. The effect of the ring stiffeners is not observed as the stiffeners 
were modelled using orthotropic shell properties. In all figures of the deformation shapes for the first 
three axisymmetric modes, the contribution of the axial motion and thus the radiation from the end 
cones result in the maximum values of the radiated sound pressure. 

a, R
2
 −

L
h

0
−L

h

Figure 10.    Deformation shape at the first n=0 natural frequency of 22.7 Hz. 

a, R
2
   −

0 −L
h

L
h

Figure 11.    Deformation shape at the second n=0 natural frequency of 45.4 Hz. 

a, R
2
   −

0
−L

h
L

h

Figure 12.    Deformation shape at the third n=0 natural frequency of 67.9 Hz. 

Acoustic response 
Figure 13 presents the maximum radiated sound pressure, which clearly shows the first three resonant 
frequencies of the submarine for the axisymmetric case (n=0 breathing modes). Small peaks due to the 
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the cylindrical shell to the total radiated pressure is represented by the central lobes in the directivity 
patterns. The side lobes are due to the contribution from the end cones. As the frequency increases, the 
radiation directivity increases in complexity. For the first three resonances, there are one, two and three 
central lobes, respectively. In Figure 14, the directivity pattern shows that the contribution to the total 
sound pressure from the cones results in large lobes in the axial direction. A partial cancellation due to 
the pressure radiated by the cylindrical section occurs in the direction normal to the axis of the 
submarine. At the second natural frequency, the cylindrical section assumes a sinusoidal shape and its 
directivity pattern is bilobate. Similarly, at the third resonance, the radiated pressure from the central 
cylindrical shell is trilobite. As expected, the end cones determine the maximum sound pressure since 
the axisymmetric modes are mainly axial modes with little radial expansion. 
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5. CONCLUSIONS 
An analytical model to study the low frequency structural and acoustic responses of a submerged vessel 
has been presented. Modelling of the submarine included several influencing factors corresponding to 
ring stiffeners, bulkheads and fluid-loading. The hull was closed by end plates and truncated conical 
shells. The truncated cones were solved using a power series solution whereas the hull was solved using 
a wave solution. The excitation from the propeller shaft results in an axisymmetric force distribution to 
the cylindrical hull which excites only the accordion modes of zeroth circumferential mode number. 
Results were presented in terms of frequency responses at each end of the cylindrical hull and of the 
maximum far field radiated sound pressure. Results were also presented for the deformation shapes and 
corresponding directivity patterns for the first three axisymmetric modes. Future work will involve 
extending the analytical model to include the effect of higher order circumferential modes, thus allowing 
the individual contributions from the higher order circumferential modes on the hull structural and 
acoustic responses to be observed. Furthermore, the development of an analytical model will allow the 
implementation of appropriate active control strategies to be investigated. 
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Figure 15. Directivity pattern at the second n=0 natural frequency 
of 45.4 Hz.
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5. CONCLUSIONS
An analytical model to study the low frequency structural and 
acoustic responses of a submerged vessel has been presented. 
Modelling of the submarine included several influencing 
factors corresponding to ring stiffeners, bulkheads and fluid-
loading. The hull was closed by end plates and truncated 
conical shells. The truncated cones were solved using a power 
series solution whereas the hull was solved using a wave 
solution. The excitation from the propeller shaft results in an 
axisymmetric force distribution to the cylindrical hull which 
excites only the accordion modes of zeroth circumferential 
mode number. Results were presented in terms of frequency 
responses at each end of the cylindrical hull and of the 
maximum far field radiated sound pressure. Results were 
also presented for the deformation shapes and corresponding 
directivity patterns for the first three axisymmetric modes. 
Future work will involve extending the analytical model to 
include the effect of higher order circumferential modes, thus 
allowing the individual contributions from the higher order 
circumferential modes on the hull structural and acoustic 
responses to be observed. Furthermore, the development of an 
analytical model will allow the implementation of appropriate 
active control strategies to be investigated.
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Messtechnik GmbH

New:   Tango™  Integrating Basic Sound Level Meter
Tango™ is our compact and easy-to-use entry-level class 1 Sound Level Meter o�ering all functions necessary 
for Environmental Protection and Health & Safety Measurements.  Our intelligent software concept, high ease 
of use and 110 dB measurement range enable even untrained users to measure the sound level immediately 
and correctly.  Even with illuminated display the Tango has a very low power consumption – two AA batteries 
typically su�ce for 120 h of operation!  SINUS o�ers the full range of  innovative equipment, software, sensors 
& accessories for noise & vibration measurements Made in Germany.

Designed to protect 
our Environment  

Technical Speci�cations:
Accuracy  Class 1 according to IEC 61672,
  IEC 60651, IEC 60804 
Type approval  will be applied by PTB soon
Range   30 ... 140 dB(A) 
Values   simultaneous measurement of
  LAeq, LCPeak, LAF, LAS, LAFmax,
  LASmax, LAE, LAtm5, LAtm5 - LAeq,
  3x LCPeak exceedance time
Memory   1 MB shared by all values 
Microphone  1/2” electret microphone 
Calibration  automatic with 94 / 114 dB 
Display   LCD with green LED back-light 
Interface   USB 
Batteries   2x AA (1.5 V) typically 120 h 
Dimensions  190 mm x 70 mm x 32 mm 
Weight   250 g (with batteries) 
Scope of Delivery  sound level meter, manual, 
  windscreen, 1.5 m USB cable, 
  Tango Utilities software 
Option 1   8 MB memory + 3x LAFNN
Option 2  Carrying case

SINUS Australian
& New Zealand
representative:

Savery & Associates Pty Ltd
PO Box 265 The Gap   • Phone: (617) 3300 6288 • www.savery.com.au
QLD 4061, Australia   • Fax:     (617) 3300 6244 • jsavery@savery.com.au

SINUS Messtechnik GmbH   • www.soundbook.de
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