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This paper shows how to compute vibrations of a double-leaf plate with random inhomogeneities in its components. The
components are two plates and reinforcement beams. The modelling method is based on the variational principle for elastic
plates and beams. In addition to the deformation of individual components, the model includes contributions from junctions
between components, e.g., rigidly of the connection between a beam and a plate. The model does not restrict the junctions to
be perfectly straight. The beams are allowed to have a small random twist. The junction rigidity is included as potential energy
in addition to the strain and the kinetic energies of the components. The random inhomogeneities are simulated as continuous
smooth random functions. A random function is realized using a predetermined probability density function and a power
spectral density function. The vibration is then computed from a set of random functions. The numerical simulations show
that the random stiffness affects the behaviour of the structure in a wide frequency range. Whereas the junctions affect the a
lower frequency vibrations. The root-mean-square velocity of surface vibration level shows changes at resonance frequencies
depending on the random functions.

INTRODUCTION
This paper presents a theoretical and computational model

of vibrations of a double-leaf plate when it is subjected
to some external forces. Double-leaf plates have a high
strength-to-weight ratio, and are used in many lightweight
constructions. Acoustic properties of double-leaf plates are
more difficult to predict than those of single plates, because of
a high number of components that make up typical double-leaf
plates. A simple design of a double-leaf plate would have
two plates sandwiching reinforcement parallel beams. There
are various methods of joining the two components such as
nails and glue. The large number of distinct components
and the complexity of the junctions make the mathematical
representation of the double-leaf plate difficult. The often
used finite element method (FEM) would represent the junction
between a plate and a beam as a ‘T’ shaped continuous
object. This is not true in most cases because the connection
at the junction is not perfect, while additionally the material
properties of the plate and the beam may be completely
different. In other cases, the FEM would require microscopic
descriptions of the junction, for example describing how the
nails react to various forces and affect the surrounding material.
This paper uses an alternative way of modelling the junctions.
A junction is modelled by the amount of energy required for
any particular way of deformation of the junction. The amount
of energy at the junction will be large or small if the bonding is
strong or weak.

The conventional deterministic models of double-leaf plates
that use the partial differential equations of Kirchhoff plates and
Euler beams can predict low frequency vibrations (see [1, 2, 7,
8, 9]). The parameters of the equations are constants such as
mass density and Young’s modulus. However the vibration of a
double-leaf plate becomes unpredictable above the 5th resonant

frequency, which in the case of a 3.2m-by-5.1m structure is
about 80 Hz. This particular dimension is chosen because of
author’s past experience with an experimental programme on
timber-framed floor/ceiling systems (see [2]). One can find
variations in the vibrations of apparently identical composite
structures. The discrepancy may come from the manufacturing
inconsistencies or random inhomogeneities in the components
themselves. The unpredictability of the vibrations of composite
structures have been known for many years, and modelled
using various methods such as perturbation, scattering, and
asymptotic methods. All of these methods assume the
irregularities in the structure to be small compared to the
wavelengths, and hence terms higher than first-order are
negligible. This is not true for most engineered products.

Another popular modelling method for double-leaf plates
is Statistical Energy Analysis (SEA). In order to use SEA, a
structure needs to be divided into sub-systems that interact with
their neighbouring systems. Two neighbouring sub-systems
are related by a loss factor that is determined either from
experiments or theoretical models. Measurements and
theoretical predictions of various types of double-leaf plates are
considered in [3, 4]. SEA has been used successfully to predict
the surface vibration level above 300 Hz. However SEA is not
suitable for computing the vibrations in the frequency range of
concern here.

In this paper the deformation of each component is computed
using the variational principle. The energy density functions
for individual components and junctions are derived using the
Kirchhoff plate, Euler beam models and Hooke’s law. Once
the integral form of the total energy in the double-leaf plate is
obtained from the functions of the deformation of individual
components of the double-leaf plate, the true solution will
give the minimum of the integral form. The solution will be
computed using the Fourier series expansion of the solution
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over the basis functions in the x and y-directions, which is
possible because of the rectangular shape of the structure. The
irregularities, the stiffness (Young’s modulus) of the two plates,
junctions and the small twist in the beams, are included using
their Fourier components. The Fourier representation of the
solution keeps the computation cost low. The computation
cost is determined by the number of Fourier terms. In this
paper 20×20 terms are used for a plate and 20 terms for a
beam. On the other hand, the computation cost of using FEM is
dependent on the resolution of the finite element mesh that must
be generated for a whole 3-dimensional double-leaf plate. The
junctions will need high resolution mesh to capture the small
deformation.

In addition to the simplified junction model, a few selected
parameters are simulated as random functions (or random
process) with pre-assigned power spectral density (PSD)
functions and probability density functions (PDFs). The
parameters are the stiffness of the plates, the rigidity of the
junction, and shape of the beams. Each random function
is assumed to be stationary, and thus its PDF is identical
everywhere at any spatial location. This paper follows the
method given in [6], in which only 1-dimensional examples
are given. In this paper, 2-dimensional random functions are
used to simulate the irregular stiffness of the top and bottom
plates. The extension from 1 to 2 dimensional random function
is straightforward. The computation is carried out for each of
the random functions and the results (vibrations of the top plate)
are studied using the root-mean-square velocity and the spatial
distribution of the variance of the vibration amplitude. The
computation time of, say 5000 simulations, for each random
function was approximately 2 to 3 hours using MatLab on a
desktop computer.
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Figure 1. Depiction of a double-leaf plate. Cross section (left) and the
view from the top (right). The origin of the coordinate system is at the
lower corner

MODELLING AND MATHEMATICAL
FORMULATION

Variational formulation
The deflection of the individual components is the solution,

which will be computed in this paper. A local coordinate

Figure 2. Depiction of the model for the coupling conditions
between the plate (top) and the beam (bottom). The springs give
the resistance to the rotational (left), vertical (centre), and horizontal
(right) movements

system is used for each component, that is, the origin is
placed at the corner of each plate, and each beam has the
origin at one end (see Fig. 1). Here the simple harmonic
vibration is considered, and hence the solutions will have the
form Re [w(x,y)expiωt] where ω is the radial frequency. The
deflection of each component is denoted by w1(x,y), w2(x, j),
and w3(x,y) for the top plate, jth beam, and the bottom
plate, respectively. Other parameters and functions will be
denoted with the corresponding subscripts 1, 2, or 3 for the
top plate, beams, and bottom plate, respectively. For example,
the thickness of the top plate is denoted by h1, and the mass
density of the bottom plate will be ρ3, and so on. The
length (x-direction) and the width (y-direction) are A and B,
respectively. Hence the plates cover the area (x,y) ∈ [0,A]×
[0,B], and the beams are modelled as one dimensional objects
for x∈ [0,A]. The beams have the same size, density, and elastic
modulus.

We choose the variational formulation using the Lagrangian
of the deflection to compute the vibration field of the structure.
The vibration field of the structure is found by constructing
the Lagrangian of the total energy in the structure (see [10]).
The solution will be found by minimizing the Lagrangian. The
Lagrangian for the whole structure is given by the following
general form for the given deformation of the structure.

L =
∫ T

0

∫

V
{P(t)+K (t)−F (t)} dvdt, (1)

where P is the potential energy, K is the kinetic energy,
and F is the work done to the object. The integral is taken
over the volume of the elastic body and the period of time T .
Here the integral will be taken over the plates and beams. The
integral over time need not be considered because the vibration
is simple harmonic.

The classical Kirchhoff (thin elastic) plate model expresses
the strain energy and kinetic energy of a thin elastic plate, which
has non-moving boundary, by

P1 =
1
2

∫ A

0

∫ B

0
D1(x,y)

∣

∣∇2w1
∣

∣

2
dxdy (2)

K1 =
ρ1h1ω2

2

∫ A

0

∫ B

0
|w1(x,y)|2 dxdy (3)

where D1(x,y) = E1(x,y)h3
1/

(

12
(

1−α2
))

is the flexural
rigidity and ρ1, h1, E1 and α are the density, the plate thickness,

Young’s modulus and Poisson ratio, respectively. Note that the
effect of rotation is neglected in K1. The minima of Eq. (1) is
the solution of the thin plate equation,

∇2 (D1(x,y)∇2w1(x,y)
)

−ω2m1w1(x,y) = p(x,y) (4)

where m1 = ρ1h1 is the mass density per unit area, and p
is the effective pressure acting on the plate. The above
differential equation is useful when an analytical solution can
be considered. We however deal with irregular structural
properties, and therefore the solution method is numerical. The
energies for the bottom plate are given by the same formulae
with P3 and K3 for w3.

The strain and kinetic energies for the Euler beams are given
by

P2 =
1
2

S

∑
j=1

∫ A

0
E2I

∣

∣w′′
2(x, j)

∣

∣

2 dx (5)

K2 =
ρ2h2ω2

2

S

∑
j=1

∫ A

0
|w2(x, j)|2 dx (6)

where E2 and I are the Young’s modulus and the moment of
inertia of the beam, and ρ2and h2 are the mass density per unit
length and the thickness of the beam, respectively. The primes
′′ on w indicate the second derivative with respect to x.

The combination of Kirchhoff plates and Euler beams
has been used successfully in [2] to predict vibrations
of timber-framed floor/ceiling systems. An example of
comparison between the theoretical prediction and the
experimental measurement is shown Fig. 3. Figure 3 shows the
root-mean-square velocity of the bottom plate. The theoretical
prediction disagrees with the experimental measurement above
80 Hz. The model of the double-leaf plate in [2] includes cavity
air, damping in timber components, and various attachments
used in construction of real building structures. In this paper
the model is simplified to to keep the computation minimum.
Furthermore the purposes of this paper are to study the effects
of the randomness in the structure and show how the random
functions can be included in the method of solution.
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Figure 3. Comparison between the theoretical prediction (dashed) and
the experimental measurements (solid)

Coupling at the junctions
In addition to the strain and kinetic energy, we include the

energy contributions from the junctions due to the discrepancy
in the displacement of the two components (see Fig. 2). The
potential energies at the junctions are given by

Psep
1,2 =

1
2

S

∑
j=1

∫ A

0
σsep (x, j)

∣

∣w1 (x,y j)−w2 (x, j)
∣

∣

2 dx (7)

Pslip
1,2 =

1
2

S

∑
j=1

∫ A

0
σslip (x, j)

∣

∣h1w′
1 (x,y j)+h2w′

2 (x, j)
∣

∣

2 dx (8)

P rot
1,2 =

1
2

S

∑
j=1

∫ A

0
σrot (x, j)

∣

∣w′
1 (x,y j)−w′

2 (x, j)
∣

∣

2 dx (9)

where ′ indicates the derivative with respect to x and σsep, σslip,
and σrot are the Hooke’s constants for springs resisting the
relative separation, slippage and rotation, respectively. These
functions are defined along the beams and have the single
variable x. The subscripts of P indicate the interaction between
either top plate and beams ((1,2)), or bottom plate and the
beams ((3,2)). A simpler model of the junction may let
the separation constant σsep become very large, that is, the
separation is nearly zero and the plate and the beams are always
in contact. The total potential energy, P in Eq. (1), is the sum
of all potential energies from the individual components and
the junctions. In [2] the slippage at the junctions have been
proven to be necessary for predicting the vibration level over
the frequency range shown in Fig. 3.

Method of solution
The method of solution chosen in this paper is the Fourier

expansion method, which is ideal because of the rectangular
shape of the structure. Furthermore the boundary of the plate
is assumed to be simply supported. Thus the basis functions
are sine-functions, further simplifying the solution. Different
basis functions must be chosen when the boundary conditions
are different. There are a few example sets of basis functions
shown in [10] for free or clamped boundaries. Whatever the
basis functions may be, a linear system of equations for the
coefficients of the expansion over the chosen basis functions
can be formulated. Hence the method of solution shown here
will be applicable.

The deflection of the top plate, bottom plate and beams are
expressed by

w1(x,y) =
N

∑
m,n=1

C(1)
mn φm(x)ψn(y) (10)

w3(x,y) =
N

∑
m,n=1

C(3)
mn φm(x)ψn(y) (11)

w2(x, j) =
N

∑
m=1

C(2)
m j φm(x) (12)

for j = 1,2, ...,S, respectively. The basis functions are given
by φm(x) =

√

2/Asinkmx, and ψn(y) =
√

2/Bsinκny, and the
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Young’s modulus and Poisson ratio, respectively. Note that the
effect of rotation is neglected in K1. The minima of Eq. (1) is
the solution of the thin plate equation,

∇2 (D1(x,y)∇2w1(x,y)
)

−ω2m1w1(x,y) = p(x,y) (4)

where m1 = ρ1h1 is the mass density per unit area, and p
is the effective pressure acting on the plate. The above
differential equation is useful when an analytical solution can
be considered. We however deal with irregular structural
properties, and therefore the solution method is numerical. The
energies for the bottom plate are given by the same formulae
with P3 and K3 for w3.

The strain and kinetic energies for the Euler beams are given
by

P2 =
1
2

S

∑
j=1

∫ A

0
E2I

∣

∣w′′
2(x, j)

∣

∣

2 dx (5)

K2 =
ρ2h2ω2

2

S

∑
j=1

∫ A

0
|w2(x, j)|2 dx (6)

where E2 and I are the Young’s modulus and the moment of
inertia of the beam, and ρ2and h2 are the mass density per unit
length and the thickness of the beam, respectively. The primes
′′ on w indicate the second derivative with respect to x.

The combination of Kirchhoff plates and Euler beams
has been used successfully in [2] to predict vibrations
of timber-framed floor/ceiling systems. An example of
comparison between the theoretical prediction and the
experimental measurement is shown Fig. 3. Figure 3 shows the
root-mean-square velocity of the bottom plate. The theoretical
prediction disagrees with the experimental measurement above
80 Hz. The model of the double-leaf plate in [2] includes cavity
air, damping in timber components, and various attachments
used in construction of real building structures. In this paper
the model is simplified to to keep the computation minimum.
Furthermore the purposes of this paper are to study the effects
of the randomness in the structure and show how the random
functions can be included in the method of solution.
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Figure 3. Comparison between the theoretical prediction (dashed) and
the experimental measurements (solid)

Coupling at the junctions
In addition to the strain and kinetic energy, we include the

energy contributions from the junctions due to the discrepancy
in the displacement of the two components (see Fig. 2). The
potential energies at the junctions are given by

Psep
1,2 =

1
2

S

∑
j=1

∫ A

0
σsep (x, j)

∣

∣w1 (x,y j)−w2 (x, j)
∣

∣

2 dx (7)

Pslip
1,2 =

1
2

S

∑
j=1

∫ A

0
σslip (x, j)

∣

∣h1w′
1 (x,y j)+h2w′

2 (x, j)
∣

∣

2 dx (8)

P rot
1,2 =

1
2

S

∑
j=1

∫ A

0
σrot (x, j)

∣

∣w′
1 (x,y j)−w′

2 (x, j)
∣

∣

2 dx (9)

where ′ indicates the derivative with respect to x and σsep, σslip,
and σrot are the Hooke’s constants for springs resisting the
relative separation, slippage and rotation, respectively. These
functions are defined along the beams and have the single
variable x. The subscripts of P indicate the interaction between
either top plate and beams ((1,2)), or bottom plate and the
beams ((3,2)). A simpler model of the junction may let
the separation constant σsep become very large, that is, the
separation is nearly zero and the plate and the beams are always
in contact. The total potential energy, P in Eq. (1), is the sum
of all potential energies from the individual components and
the junctions. In [2] the slippage at the junctions have been
proven to be necessary for predicting the vibration level over
the frequency range shown in Fig. 3.

Method of solution
The method of solution chosen in this paper is the Fourier

expansion method, which is ideal because of the rectangular
shape of the structure. Furthermore the boundary of the plate
is assumed to be simply supported. Thus the basis functions
are sine-functions, further simplifying the solution. Different
basis functions must be chosen when the boundary conditions
are different. There are a few example sets of basis functions
shown in [10] for free or clamped boundaries. Whatever the
basis functions may be, a linear system of equations for the
coefficients of the expansion over the chosen basis functions
can be formulated. Hence the method of solution shown here
will be applicable.

The deflection of the top plate, bottom plate and beams are
expressed by

w1(x,y) =
N

∑
m,n=1

C(1)
mn φm(x)ψn(y) (10)

w3(x,y) =
N

∑
m,n=1

C(3)
mn φm(x)ψn(y) (11)

w2(x, j) =
N

∑
m=1

C(2)
m j φm(x) (12)

for j = 1,2, ...,S, respectively. The basis functions are given
by φm(x) =

√

2/Asinkmx, and ψn(y) =
√

2/Bsinκny, and the
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wavenumbers are given by km = πm/A and κn = πn/B. Note
that the basis functions are orthonormal. The positions of the
joists are given by y= y j, j = 1,2, ...,S. Note that the number of
terms in the series has already been truncated to N to construct
the finite system for the numerical computation. The operations
in Eq. (1) are then expressed using the column vectors of the
coefficients, c1 =

(

C(1)
11 ,C

(1)
21 , · · · ,C

(1)
NN

)

,

c2 =
(

C(2)
11 ,C(2)

21 , · · · ,C
(2)
NS

)

, and c3 =
(

C(3)
11 ,C

(3)
21 , · · · ,C

(3)
NN

)

.
The variational formulation then becomes

1
2





c1
c2
c3





t

L





c1
c2
c3



= ft





c1
c2
c3



 (13)

where L is the matrix from the integrals and f is the vector of
the external forcing, whose elements are given by

∫ A

0

∫ B

0
f (x,y)φm(x)ψn(y)dx (14)

with zero padding for the parts corresponding to c2 and c3.
Here the forcing on the top plate is given by the Delta-function
f (x,y) = f0δ (x− x0,y− y0) for some fixed point (x0,y0) and
a constant force amplitude f0, which makes the integrals
unnecessary. The following will give details how the elements
of L are obtained.

Substituting the Fourier series expansion for the deflections
w1 and w2 into Eq. (8) gives

Pslip
1,2 =

S

∑
j=1

∫ A

0
σslip (x, j)

∣

∣

∣

∣

∣

h1

N

∑
m,n=1

kmC(1)
mn ϕm(x)ψn(y j)

+h2

N

∑
m=1

kmC(2)
m j ϕm(x)

∣

∣

∣

∣

∣

2

dx (15)

where ϕm(x) =
√

2/Acoskmx. Then the above integral will be
obtained by

∫ A

0
σslip(x, j)ϕm(x)ϕm′(x)dx

=
1
A

∫ A

0
σslip(x, j)

(

cos
π(m−m′)

A
x− cos

π(m+m′)

A
x
)

dx

(16)

Notice that this integral is simply the Fourier cosine coefficients
of the function σslip (x, j), which can be computed using the
fast Fourier transform (FFT). The matrix that corresponds to the
separation σsep can be obtained by the similar derivation. More
details for calculating the elements of the matrix are given in
Appendix .

Substituting the series expansion for w1(x,y) into Eq. (2) for
P1 leads to vector and matrix expression for the strain energy
of the top plate. Let the function D1 be separated into
D1(x,y) = D1 + d1(x,y) where D1 is the average stiffness and
d1(x,y) is the deviation from the average. The elements of
the matrix L due to the varying stiffness d1(x,y) are computed

using the integral

N

∑
m,n,

m′,n′=1

∫ A

0

∫ B

0
d1(x,y)C

(1)
mnC(1)

m′n′
(

k2
m +κ2

n
)(

k2
m′ +κ2

n′
)

×φm(x)φm′(x)ψn(y)ψn′(y)dxdy (17)

The constant stiffness D1 will give us a diagonal matrix with
its element D1(k2

m + κ2
n )

2 because of the orthogonality of the
functions {φm} and {ψn}. The above integral is the formula for
the Fourier cosine coefficients for the function d1(x,y), which
can be found using the FFT. Furthermore, the products of cosine
components are obtained by taking the real part of the FFT in x
and y directions. The contribution from the bottom plate can be
derived using the same formula for w3.

In order to include not-so-straight shape of beams, we here
make a few assumptions and keep the model simple. The strain
energy of the beams is computed in the same way as before by
integrating over the x from 0 to A. The shape of jth beam is
denoted by the function of x, θ j(x). Thus the contact between
the top plate and the beam is given by y = y j + θ j(x). We
first take the Taylor expansion of the basis functions along
the junction and omit the higher order terms because θ j(x) is
assumed small.

ψn(y j +θ j(x))≈ ψn(y j)+κnθ j(x)χn(y j) (18)

where χn(y) =
√

2/Bcosκny. Then the displacement of the
plate along the junction, denoted by B j are given by

w1|(x,y)∈B j
=

N

∑
m,n=1

{

ψn(y j)+κnθ j(x)χn(y j)
}

C(1)
mn φm(x) (19)

The expansion for the twisting beams remains the same,
i.e., w2(x, j) = ∑N

m=1 C(2)
m j φm(x). The energy contributions

{

Pslip
i, j ,Psep

i, j

}

(i, j)=(1,2),(3,2)
are now calculated from the above

two expressions.
The potential energy due to the slippage at the twisting beams

is modified and given by

Pslip
1,2 =

σslip

2

S

∑
j=1

∫ A

0

∣

∣h1w′
1(x,y j +θ j(x))+h2w′

2(x, j)
∣

∣

2

1+(θ ′
j(x))2 dx

(20)

and the potential energy due to the separation is

Psep
1,2 =

σsep

2

∫ A

0

∣

∣w1(x,y j +θ j(x))−w2(x, j)
∣

∣

2 dx (21)

The constant σsep will be set to be large so to keep the plates and
the beams in contact always. Here we assume that |θ j(x)|2 �
1 and |θ ′

j(x)|2 � 1. We then have the following simplified
formula.

Pslip
1,2 =

σslip

2

S

∑
j=1

∫ A

0
(h1 +h2)

2 ∣
∣w′

2(x, j)
∣

∣

2 dx (22)

Substituting the series expansion of w2(x, j) gives

Pslip
1,2 =

(h1 +h2)
2

2

S

∑
j=1

N

∑
m,m′=1

kmm′C(2)
m j C

(2)
m′ j

×
∫ A

0
σslip(x, j)ϕm(x)ϕm′(x)dx (23)

SIMULATION OF RANDOM FUNCTIONS
The parameter functions, di(x,y), σslip(x, j) and θ j(x), must

be continuous and smooth because they model real components
and junctions. Thus a series of discrete random numbers along
the junctions or a plate surface will not be adequate. The
methods of generating continuous smooth random functions
have been studied by the signal processing community for many
years (see [5, 11, 12]). Here the random functions are simulated
using the method given in [6], in which a stationary random
process is simulated using a prescribed PDF and PSD. As an
example, the Gaussian distribution is used for the prescribed
PDF here. There are two reasons for the choice of Gaussian
distribution. First, the computation of normally distributed
random functions is simple. Second, the author has not been
able to find any measurements of the PDF of stiffness of timber
products and their junctions. However there is a set of data
of timber beam shape (2.5 m long beams) obtained by SCION
Research in New Zealand (through personal communication).
The histogram of the twist amplitude is shown in Fig. 4. The
standard deviation of the measurements is approximately 0.8
mm. 301 beams were measured at 500 positions. Figure 4
shows the histogram of the measurements at all positions.
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Figure 4. PDF of the twist of dried timber beams

Let S(x) be a random function (or random process) for the
spatial variable 0 ≤ x ≤ A. We assume that S(x) has the
probability p(S ≤ s) and the probability density function pS(s)
at any x ∈ [0,A]. The PDF pS(s) is assumed to be identical for
any x. In other words S(x) is a stationary process. It is further
assumed that S(x) can be expressed by

S(x) =

√

2
M

M

∑
i=1

Qi cos(2πFix/A+Φi) (24)

where Qi, Fi, and Φi are the random variables with some
probability densities. Here M needs to be sufficiently large,

and is set to 100. The above series makes the mean of S(x) zero
for all x ∈ [0,A]. Let us follow the procedure given in [6] to
formulate the PDFs for Qi, Fi, and Φi.

First, the amplitudes {Qi} are assumed to be independent and
identically distributed (i.i.d) random variable with PDF denoted
by pQ(q) for q > 0. The phases {Φi} are also assumed to
be i.i.d and their PDF is given by the uniform distribution in
[−π,π]. The frequencies {Fi} are i.i.d with the marginal first
order continuous PDF denoted by pF( f ) for 0 ≤ f ≤V/2.

The PDF of Fi and the PSD of S(x) denoted by PS( f ) are
related by the formula

pF(| f |) =
2

E [Q2]
PS( f ), −V

2
≤ f ≤ V

2
(25)

where V is some large enough value so that PS( f ) is nearly zero
outside of the range [−V/2,V/2]. Setting the variance of S
to be ν2 gives E

[

Q2
]

= ν2. The PSD function PS( f ) here is
chosen to be simple bell shaped, for example,
PS( f ) = K exp

(

−( f −δ )2/2µ2
)

, where K, δ , and µ will be
varied to simulate effects of changing parameters. An example
is shown in Fig. 7(left).

The characteristic function of the random function S(x) is
given by

ψS(γ) = E
[

eiγS
]

=

[

∫ ∞

0
pQ(q)J0

(

γq
√

M/2

)

dq

]M

(26)

where J0 is the Bessel function of the first kind of order zero.
The PDF for Q is related to the characteristic function of S(x)
by

pQ(q) = q
∫ ∞

0

(

ψS(v
√

M/2)
)1/M

J0(qv)vdv (27)

which is the inverse Hankel transform. For the Gaussian
parameter, the characteristic function is given by
ψS(γ) = exp

(

−ν2γ2/2
)

. Hence the inverse Hankel transform
gives the following PDF of the amplitude

pQ(q) = q
∫ ∞

0

(

exp
(

−Mν2

4
v2
))1/M

J0(qv)vdv (28)

The above integral has the closed form, which is

pQ(q) =
2q
ν2 exp

(

− q2

ν2

)

(29)

This is a Rayleigh PDF, which can be simulated from the two
Gaussian random variables. For example, when the variance
is ν2 = 2, then the amplitudes are simulated by U1 ∼ N (0,1)

and U2 ∼ N (0,1), then Q ∼
√

U2
1 +U2

2 . The histogram of
the simulation result is shown in Fig. 5 along with the target
PDF of normal distribution with the standard deviation

√
2.

The slippage function σslip(x, j) will be generated using the
distribution shown in Fig. 5. The standard deviation of the
distribution will be set to be 3× 106 Nm−1, which is 10% of
the average slippage resistance constant 3× 107 Nm−1. This
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Substituting the series expansion of w2(x, j) gives

Pslip
1,2 =

(h1 +h2)
2

2

S

∑
j=1

N

∑
m,m′=1

kmm′C(2)
m j C

(2)
m′ j

×
∫ A

0
σslip(x, j)ϕm(x)ϕm′(x)dx (23)

SIMULATION OF RANDOM FUNCTIONS
The parameter functions, di(x,y), σslip(x, j) and θ j(x), must

be continuous and smooth because they model real components
and junctions. Thus a series of discrete random numbers along
the junctions or a plate surface will not be adequate. The
methods of generating continuous smooth random functions
have been studied by the signal processing community for many
years (see [5, 11, 12]). Here the random functions are simulated
using the method given in [6], in which a stationary random
process is simulated using a prescribed PDF and PSD. As an
example, the Gaussian distribution is used for the prescribed
PDF here. There are two reasons for the choice of Gaussian
distribution. First, the computation of normally distributed
random functions is simple. Second, the author has not been
able to find any measurements of the PDF of stiffness of timber
products and their junctions. However there is a set of data
of timber beam shape (2.5 m long beams) obtained by SCION
Research in New Zealand (through personal communication).
The histogram of the twist amplitude is shown in Fig. 4. The
standard deviation of the measurements is approximately 0.8
mm. 301 beams were measured at 500 positions. Figure 4
shows the histogram of the measurements at all positions.
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where Qi, Fi, and Φi are the random variables with some
probability densities. Here M needs to be sufficiently large,

and is set to 100. The above series makes the mean of S(x) zero
for all x ∈ [0,A]. Let us follow the procedure given in [6] to
formulate the PDFs for Qi, Fi, and Φi.

First, the amplitudes {Qi} are assumed to be independent and
identically distributed (i.i.d) random variable with PDF denoted
by pQ(q) for q > 0. The phases {Φi} are also assumed to
be i.i.d and their PDF is given by the uniform distribution in
[−π,π]. The frequencies {Fi} are i.i.d with the marginal first
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related by the formula
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where V is some large enough value so that PS( f ) is nearly zero
outside of the range [−V/2,V/2]. Setting the variance of S
to be ν2 gives E
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= ν2. The PSD function PS( f ) here is
chosen to be simple bell shaped, for example,
PS( f ) = K exp
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, where K, δ , and µ will be
varied to simulate effects of changing parameters. An example
is shown in Fig. 7(left).
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given by
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by
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which is the inverse Hankel transform. For the Gaussian
parameter, the characteristic function is given by
ψS(γ) = exp
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−ν2γ2/2
)

. Hence the inverse Hankel transform
gives the following PDF of the amplitude

pQ(q) = q
∫ ∞

0
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J0(qv)vdv (28)

The above integral has the closed form, which is

pQ(q) =
2q
ν2 exp
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This is a Rayleigh PDF, which can be simulated from the two
Gaussian random variables. For example, when the variance
is ν2 = 2, then the amplitudes are simulated by U1 ∼ N (0,1)

and U2 ∼ N (0,1), then Q ∼
√

U2
1 +U2

2 . The histogram of
the simulation result is shown in Fig. 5 along with the target
PDF of normal distribution with the standard deviation

√
2.

The slippage function σslip(x, j) will be generated using the
distribution shown in Fig. 5. The standard deviation of the
distribution will be set to be 3× 106 Nm−1, which is 10% of
the average slippage resistance constant 3× 107 Nm−1. This
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average value comes from the experimental measurements in
[2] for the junction between a plywood panel and a timber joist.

The stiffness function d1(x,y) can be similarly simulated
using the expansion

d1(x,y) =
1
M

M

∑
i, j=1

Qi j cos
(

2πFix
A

+Φi

)

cos
(

2πG jy
B

+Ψ j

)

(30)

where the coefficients
{

Qi j
}

are random variables with the
Rayleigh distribution, and Φi and Ψ j are uniformly distributed
random values in [−π,π]. The frequencies Fi and G j are also
generated from Eq. (25) and Eq. (26). In order to prove that
the above expression correctly simulates the random realization
in 2-dimensional space with the correct PSD and PDF, one
needs to extend the derivation given in [6], which is beyond the
scope of this paper. Instead, only the simulated realizations are
numerically confirmed here. The histogram of the simulations
is shown in Fig. 6 with the target PDF of normal distribution
with the standard deviation 1. Again the PSD of d1 (and d3)
is chosen to be a simple bell shaped function. An example
is shown in Fig. 7(right). In the numerical simulations, the
standard deviation of the stiffness of the plates d1(x,y) and
d3(x,y) will be set to be 3% of the average stiffness of the
plates in the following section. The value 3% has been chosen
because the effects of inhomogeneous stiffness start to show at
that value.

NUMERICAL COMPUTATION
The computation results of the solution w1(x,y) are studied

here using the simulated functions σslip(x, j), di(x,y) and θ j(x).
The number of terms for the Fourier expansion was set to be
N = 20. All computation was done using MatLab on a standard
personal desktop computer. No special numerical packages
were used. The parameters for the beams and the plates are
chosen from the well used values for plywood and timber
beams, E1 = E3 = 1010 Pa, E2 = 1.4× 1010 Pa, m1 = m2 =
m3 = 500 kgm−3, A = 5.1 m, B = 3.2 m, h1 = h3 =0.015 m,
h2 =0.3 m, α =0.3, y j = jB/8, j = 1,2, ...,7, and the width of
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Figure 7. Examples of PSDs for the 1 and 2 dimensional random
functions

the beams is 0.045m. The average slippage constant is 3×107

Nm−1, which was determined from the experiments in [2]. The
location of the forcing is (2.85,2.1) with f0 = 1000N.

The PSD of random functions is chosen to mimic what
might be happening at the junctions. It is not obvious to the
author how the conditions can be measured in real composite
structures. On the other hand, the PSD of the shape θ j(x) may
be chosen based on actual measurements. Here each PSD is
simply set to be a bell shaped smooth curve with a peak (Fig. 7).
Two different peak positions have been used to compare the
effects of spatial variations on the solution.

Figures 8 and 9 show the distributions of the variance of
the surface deflection of the top plate when slippage and
stiffness are randomized, respectively. There seems to be
no particular rule how the variance is distributed over the
plate. The distribution varies as the frequency changes. The
slippage affects lower frequency vibrations than it does the
higher frequency ones as shown in Figs. 11(a) and (b). In
Fig. 8, the variance distribution changes from even to localized
distribution as the frequency increases. Figure 9 shows that the
stiffness affects the higher frequency vibrations evenly over the
plate. On the other hand the random stiffness shows localized
effects at lower frequencies. Figure 10 shows the distributions
of the variance of the surface deflection of the top plate when
there is small random twist in the beams. The variance is more
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Figure 8. Contour plot of the variance distribution of the deflection
over the top plate when slippage is random at 100 Hz (a), 150 Hz (b),
200 Hz (c) and 250 Hz (d)
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Figure 9. Contour plot of the variance distribution of the deflection
over the top plate when stiffness of the two plates is random at 100 Hz
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evenly spread over the plate compared to Figs. 8 and 9.
Figures 11 and 12 show the root-mean-square velocity at the

frequencies from 150 Hz to 250 Hz. The vertical axis is in a
log scale without any reference velocity. The velocity is not
converted to decibels because this study is not about sound
pressure. The slippage is randomized for Figs. 11(a) and (b),
and the stiffness is randomized for Figs. 11(c) and (d). Figures
11(a) and (b) correspond to the PSDs with peaks at spatial
frequencies at 3 m−1 and 5 m−1, respectively. Figures 11(c) and
(d) correspond to the PSDs with peaks at spatial frequencies
of (x,y) components at (2 m−1,4 m−1) and (4 m−1,8 m−1),
respectively. The randomness of the slippage affects the surface
velocity near the resonant frequencies at lower frequencies.
However there is little effect showing between 220 Hz and
240 Hz, even thought there are several resonance frequencies
in that range. The random stiffness affects the vibration at
the higher frequencies and the vibration level is flattened.
Furthermore the variance of the vibration level is small. In
both slippage and stiffness cases, the smaller variations of the
random functions lead to smoother vibration levels. Figure
12 shows the root-mean-square velocity when there is small
random twist in the beams. The standard deviations of the twist
are 1.25 mm (Fig. 12(a)) and 2.5 mm (Fig. 12(b)), which are
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Figure 10. Contour plot of the variance distribution of the deflection
over the top plate with the random twist in the beams at 100 Hz (a),
150 Hz (b), 200 Hz (c) and 250 Hz (d)

larger than the measured standard deviation shown in Fig. 4.
The larger values were chosen to show clearly the effects of the
twist. The larger twist affects the higher frequency vibrations
in a similar way the random stiffness does in Fig. 11.

The numerical simulations show that the random
irregularities affect the vibration over the whole plate
surface. Thus the modelling of a composite structure, even
this moderately complex double-leaf plate, requires the
random irregularities to be taken into account. In particular,
both Figs. 11 and 12 show that the vibrations at the higher
frequencies are greatly affected by the random functions.

SUMMARY AND CONCLUSION
The simulations of the vibration of a double-leaf plate with

random parameters have been carried out. The parameters are
slippage, stiffness and small twist of beams, which are given by
continuous smooth functions of x or (x,y). The computation
cost of the simulations is kept low using the Fourier series
solutions and the variational formulation. The simulations
show that each random function affects the vibration differently
in different ranges of frequencies. Also the spatial distributions
of the variance show that the randomness along the junctions
(slippage and twists) leads to more even spread over the plate
than that of the random stiffness results. More definitive studies
are needed to understand the effects of random parameters on
the vibration. The method shown in this paper can include
more random parameter functions as additional energy terms
in the variational formulation. The method of solution changes
little because only the elements of the matrix L in Eq. (13) that
correspond to a new random function will need to be modified.
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evenly spread over the plate compared to Figs. 8 and 9.
Figures 11 and 12 show the root-mean-square velocity at the

frequencies from 150 Hz to 250 Hz. The vertical axis is in a
log scale without any reference velocity. The velocity is not
converted to decibels because this study is not about sound
pressure. The slippage is randomized for Figs. 11(a) and (b),
and the stiffness is randomized for Figs. 11(c) and (d). Figures
11(a) and (b) correspond to the PSDs with peaks at spatial
frequencies at 3 m−1 and 5 m−1, respectively. Figures 11(c) and
(d) correspond to the PSDs with peaks at spatial frequencies
of (x,y) components at (2 m−1,4 m−1) and (4 m−1,8 m−1),
respectively. The randomness of the slippage affects the surface
velocity near the resonant frequencies at lower frequencies.
However there is little effect showing between 220 Hz and
240 Hz, even thought there are several resonance frequencies
in that range. The random stiffness affects the vibration at
the higher frequencies and the vibration level is flattened.
Furthermore the variance of the vibration level is small. In
both slippage and stiffness cases, the smaller variations of the
random functions lead to smoother vibration levels. Figure
12 shows the root-mean-square velocity when there is small
random twist in the beams. The standard deviations of the twist
are 1.25 mm (Fig. 12(a)) and 2.5 mm (Fig. 12(b)), which are
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larger than the measured standard deviation shown in Fig. 4.
The larger values were chosen to show clearly the effects of the
twist. The larger twist affects the higher frequency vibrations
in a similar way the random stiffness does in Fig. 11.

The numerical simulations show that the random
irregularities affect the vibration over the whole plate
surface. Thus the modelling of a composite structure, even
this moderately complex double-leaf plate, requires the
random irregularities to be taken into account. In particular,
both Figs. 11 and 12 show that the vibrations at the higher
frequencies are greatly affected by the random functions.

SUMMARY AND CONCLUSION
The simulations of the vibration of a double-leaf plate with

random parameters have been carried out. The parameters are
slippage, stiffness and small twist of beams, which are given by
continuous smooth functions of x or (x,y). The computation
cost of the simulations is kept low using the Fourier series
solutions and the variational formulation. The simulations
show that each random function affects the vibration differently
in different ranges of frequencies. Also the spatial distributions
of the variance show that the randomness along the junctions
(slippage and twists) leads to more even spread over the plate
than that of the random stiffness results. More definitive studies
are needed to understand the effects of random parameters on
the vibration. The method shown in this paper can include
more random parameter functions as additional energy terms
in the variational formulation. The method of solution changes
little because only the elements of the matrix L in Eq. (13) that
correspond to a new random function will need to be modified.
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Figure 12. The root-mean-square velocity when there is small random
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mean of the simulations is shown by solid curve

Appendix - Formulae for the simple
coupling between a plate and beams

When the coupling parameter σsep is constant along the beams,
the lagrangian matrix for the coupling energy contribution is
given by

σsep

2

S

∑
j=1

∫ A

0

∣

∣w1(x,y j)−w2(x, j)
∣

∣

2 dx (A1)

The above expression can be expressed by the vector operation

1
2

(

c1
c2

)t [ σsepMtM −σsepMt

−σsepM σsepI

](

c1
c2

)

(A2)

where the matrix M represents the operation

N

∑
n=0

C(1)
mn ψn(y j) (A3)

Then, the total matrix is given by
[

L1 +σsepMtM −σsepMt

−σsepM L2 +σsepI

]

(A4)

where I is the identity matrix. The matrices for the interaction
between the beams and the bottom plate can be obtained in a
similar way. We have the complete matrix




L1 +σsepMtM −σsepMt 0
−σsepM L2 +2σsepI −σsepM

0 −σsepMt L3 +σsepMtM



 (A5)

where Li, i = 1,2,3 are the strain and kinetic energy matrices
for the top plate, the beams, and the bottom plate, respectively.


