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Figure 3. Pressure field contours from the WI-model after hammer
impact (normalized)

again, with the expected reversed phase.
It can be seen that developing wavefronts become smooth

after approximately 10m. Also, as was the case in the
simulations above, the wavefront in the bottom is not as
pronounced as it is in the water phase. However, the degree
of disfiguration is clearly lower, resulting mainly from the last
point source at the pile, which hints to a problem with the
non-reflecting boundaries in the FE-model.

Concluding, it can be said that the main characteristics of
acoustic pile driving radiation, with the presented WI approach,
can be qualitatively reproduced. This could be achieved by
means of a relatively simple modelling approach. Therefore,
a further enhanced wavenumber integration model is believed
to show great promise in the context of acoustic long range
predictions of SPLs from pile driving.

CONCLUSIONS AND PROSPECTS
A qualitative modelling of pile driving noise with the help

of wavenumber integration is presented and its fundamentals
are briefly discussed. To be able to verify the obtained results,
an FE model is set up and, first, checked against simulations
of Reinhall and Dahl, who identified the main characteristics
in pile driving acoustics to be the occurrence of Mach cones.
Then, an approach to model the same radiation with the help of
parabolic equation modelling, put forward by the same authors,
is carried out using wavenumber integration. The qualitative
results of the FE and the WI model are compared and found to
be in excellent agreement.

As the next step, the comparison of the results on a
quantitative basis is planned. After this verification, a validation
against extensive planned offshore measurements is envisaged.
Therefore, the model is supposed to incorporate both rough
boundaries and ambient noise, to account for the actual sea state
and weather conditions during the measurements.
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INTRODUCTION
There are many examples of thin-walled, inflated shells 

in our lives – think of airbags, basketballs, tyres, eyeballs, 
soap bubbles and balloons. These objects may be toroidal, 
spherical, or some more generalised ovoidal shape, but they 
all have three features in common: a pressure difference across 
the skin; a thin, tensioned membrane; and a doubly curved 
interface surface. This means that for all of these systems, a 
common set of fundamental equations of motion will form the 
basis of a derivation of the vibration modes. Hence, once an 
analytical solution to the vibration of one of these systems (e.g. 
soap bubbles) has been obtained, theory can be extrapolated to 
aid in describing another of these systems (e.g. balloons). This 
is the approach taken in this paper to investigate the vibrations 
of balloons.

The wider context of this research is the dynamic modelling 
of high-altitude tethered balloons, which have attracted interest 
recently due to their potential uses in mobile communications, 
meteorology, energy harvesting and climate engineering. 
Recent papers on the dynamics of high-altitude tethered 
balloons [1-4] treat the balloon as a rigid body. The spherical 
or streamlined shape of the balloon affects the lift and drag 
forces, but it is assumed that the forcing from the tether does 
not result in balloon deformations. However, when the authors 
observed a 1m-diameter meteorological balloon tethered at 
15m, a strong vibration coupling between axial excitation 
of the tether and ovalling deformations of the balloon was 
seen. This suggests that higher-order modes can be excited on 
tethered balloons.

In this paper, the balloon is assumed to have a spherical 
shape. This is the simplest balloon shape, and is a good 
approximation to the shape of meteorological balloons and 
small-scale high-altitude balloons. Streamlined aerostats that 
exhibit weather-vaning behaviour, and the pumpkin-shaped 
envelopes that are designed to reduce hoop stresses in large 
high-altitude balloons are considered beyond the scope of this 
paper.

A literature search on balloon vibrations revealed that no 
mathematical model had been specifically derived for balloons, 
so our attention turned to other inflated shells. Analogous 
studies of the vibration modes of thin-walled spherical shells 
were found, including those with application to inflatable 

cushions [5], pneumatic tires [6], eyeballs [7], heart ventricles 
[8], soap bubbles [9-10] and basketballs [11]. These studies use 
a combination of one or more of analytical techniques, finite 
element analysis and experimental measurement to determine 
modeshapes and natural frequencies. Of all the inflated shells 
that were identified, soap bubbles had received the most 
attention in the modelling literature, and as they are of a 
similar spherical geometry to balloons, bubbles were chosen as 
the closest analogue for the purpose of studying the vibration 
modes and natural frequencies.

This paper describes a model of soap bubble vibrations, 
and compares the results of this model to the experimentally 
measured response of a rubber balloon. The calculated natural 
frequencies and modeshapes are compared, and conclusions 
regarding the suitability of this predictive model are made.

BUBBLE VIBRATIONS
The earliest analysis of the bubble vibration problem was 

performed by Rayleigh [12], in his study of the vibration 
of a liquid mass about a spherical figure. This analysis was 
extended by Lamb in 1895, in his book Hydrodynamics [13], to 
account for the surrounding fluid. Lamb’s well-known solution 
describes a spherical bubble of one fluid (e.g. air) immersed 
within a second fluid (e.g. water), which is often described 
as a ‘droplet’. Lamb begins by assuming an expression for 
the shape of the common surface, and then uses it to find the 
corresponding velocity potential and pressure at internal and 
external points. Using the Theorem for Solid Geometry and 
the expression for surface tension, he derives this closed-form 
solution for the natural frequencies ωj of the bubble	

ωj
2 = σ  (j-1)j(j+1)(j+2)

R3    (j+1)ρ++jρ− 	
(1)

where σ is the surface tension, R is the radius, j is the mode 
number (j = 1,2, ...), ρ+ is the fluid density inside the droplet, and 
ρ- is the fluid density outside the droplet. (For an explanation of 
why j ≠ 0, refer to the Comparison of Results section).

It was more than one hundred years later that a solution 
to the vibration of soap bubbles was formulated by Grinfeld 
[10]. Grinfeld’s model includes the inertia of the bubble film, 
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underpredicts the balloon’s natural frequencies, and it is concluded that the nonlinear elasticity present in the balloon skin 
accounts for this result.
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thus representing a system that comprises three different fluids: 
the inner fluid, the film fluid, and the outer fluid. To derive 
this model, Grinfeld begins with the linearised form of Euler’s 
equations governing inviscid flow

∂vi

∂t = − ip1
ρ 	 (2a)

ivi = 0	 (2b)

where vi is the covariant component of the velocity fields, ρ is 
the surrounding fluid density (either ρ+ or ρ− depending on the 
domain) and p is the pressure. The momentum and velocity 
components in each of the three spherical coordinate directions 
are derived, and the condition that the ambient velocity field in 
the radial direction must be equal on either side of the bubble 
film is applied. 

The equations for the dynamic behaviour of the bubble film 
are formulated using a Laplace capillarity model, and include 
interaction with the ambient air. The detailed formulation of 
these equations can be found in [14, 15]. For a fluid film with 
constant thickness, the linearised equation is

τ0       = σ ( α
αc +      c) + [     ]∂2c 2

R2∂t2 ∂t
∂p

	
(3)

where τ0 is the uniform equilibrium two-dimensional mass 
density of the film, c is the small component of the velocity 
field, α

α is the surface Laplacian, and the symbol [p] denotes 
the jump in ambient pressure across the surface of the film.

Equations (2a), (2b) and (3) combine to give a dispersion 
relationship, which is solved to obtain the natural frequencies 
of the soap bubble

ωj
2 = σ

R3 j(j+1)τ0R−1+(j+1)ρ++jρ−
(j−1)j(j+1)(j+2)

	 (4)

As the mass density of the film approaches zero, this equation 
is shown to reduce to Lamb’s ‘droplet’ solution.

The modeshapes that correspond to these natural frequencies 
are proportional to the surface spherical harmonics, Yjn (ϴ,φ), 
where the mathematical convention for spherical coordinates 
is adopted such that ϴ is the azimuthal angle, and φ is the polar 
angle. In orthonormal form, the surface spherical harmonics 
are made up of the following two expressions

	2j+1 (j−n)!
2π (j+n)! Pj

n(cos φ) cos nϴ
	

(5a)

	

2j+1 (j−n)!
2π (j+n)! Pj

n(cos φ) sin nϴ
	

(5b)

where Pj
n(cos φ) are associated Legendre functions of the first 

kind of degree j and order n. The modeshapes for j = 0,1,2,3 are 
illustrated in Figure 1, where the colouring indicates the amount of 
deflection in the radial direction. The modeshape corresponding to 
j = 0 is called the ‘breathing mode’, as it involves uniform radial 
extension over the entire sphere. The modeshapes corresponding 
to j = 1 represent the three orthogonal rigid-body modes.

To obtain the frequency-response function from the natural 
frequencies and mode shapes of the bubble, the general 
equation from Newland [16] can be used. The frequency-
response function H(zr, zs, ω) of an undamped system, with 
output measured at location zr and subjected to a unit harmonic 
input force at location zs is given in Newland [16] as

H (zr,zs,ω) = Σ∞
j=0                       

Uj(zr)Uj(zs)
ωj

2 − ω2 	 (6)

where Uj(zr) is the mass-normalised mode function of mode 
j, evaluated at zr. For the case of the vibrating bubble skin, 
the mass-normalised mode function is represented solely by 
the contribution of the membrane displacement in the radial 
direction, that is, the surface spherical harmonics. The mass-
normalisation condition is expressed as

λ2 ∫0
2π ∫0

π Yjn(ϴ,φ) τ0R2dφdϴ = 1	 (7)

where λ is the normalisation constant. The normalisation constant 
is found by numerically evaluating Eq.  (7) in the modelling 
program. For comparison with the experimental results in the 
next section, the driving-point response of the bubble is to be 
evaluated at the south pole, that is, at zr = zs = (a, 0, π). This 
means that only the axisymmetric modeshapes (n = 0) are 
excited, hence the response of the bubble is given by

H (zr,zs,ω) = Σ∞
j=0                                 

λ2Y j0 (0,π)Y j0 (0,π)
ωj

2 − ω2 	 (8)

Having determined the frequency-response function for the 
vibrations of soap bubbles, we now turn out attention to the 
vibrations of balloons.

Figure 1. The spherical surface harmonics for j = 0,1,2,3

BALLOON VIBRATIONS
There is no mathematical model for balloon vibrations in 

the literature, hence we embarked on a series of experiments to 
determine the natural frequencies and modeshapes of a large, 
spherical, helium-filled novelty balloon.

The natural frequencies were determined by measuring the 
driving-point frequency-response function of the balloon, using 
an impact hammer and a laser vibrometer. The impact hammer 
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was used to deliver an impulse to the base of the balloon, near 
the neck, and the laser beam was aimed at a piece of reflective 
tape positioned as close as possible to the impact point. The 
data from the impact hammer and the laser vibrometer were 
logged and analysed using a customised Matlab program. The 
experimental setup is shown in Fig. 2.

Figure 2. The experimental setup used to measure the balloon vibration 
modes, showing (a) the laser beam from the vibrometer, aimed at a 
piece of reflective tape near the base of the balloon; and (b) the impact 
hammer used to deliver an impulse to the base of the balloon.

The balloon is made of rubber latex, and has a design 
diameter of 1m, though was only partially inflated for ease of 
handling. The laser vibrometer is a Polytec OFV302 single-
point vibrometer, connected through a Polytec OFV 3001 
vibrometer controller. The velocity range is 1000mm/s/V 
and the velocity filter is set at 2.4kHz. The impact hammer 
is a miniature instrumented impact hammer, model PCB 
086E80. The experimental parameters for this balloon are 
given in Table 1. The pressure in the balloon was measured by 
connecting the balloon to a U-tube manometer. 

The balloon is very sensitive to disturbances in the 
surrounding air, and to minimise movement of the balloon 
it was restrained by a clamp on the neck, below the tie-off 
point. A total of 50 hammer impacts were used to calculate 
an averaged velocity frequency-response function. The major 
peaks of this frequency-response function represent the natural 
frequencies of the balloon, and the first eight peaks occur 
at 0.63Hz, 6.8Hz, 55.1Hz, 79.8Hz, 105Hz, 131Hz, 157Hz, 
and 185Hz. The coherence lies between 0.9 and 1.0 over the 
measured frequency range of 0Hz to 300Hz, hence the resonant 
behaviour of the balloon in this range is due to the hammer 
impact. Figure  3 shows the measured velocity frequency-
response function of the balloon, as a function of frequency. 

Also overlaid on Fig.  3 is the driving-point response 

calculated using the mathematical model of the soap bubble, 
with the experimental parameters given in Table 1 being used 
as the input to this model. The surface tension for the soap 
bubble model is calculated by equating the outwards-acting 
force due to the internal pressure with the restoring force 
provided by the surface tension, such that

σ =
pR
2 	 (9)

(Note that the surface tension in the soap bubble model 
is a factor of two larger than the surface tension acting in a 
droplet, as the bubble has two film surfaces as opposed to the 
one surface that separates the fluids in a droplet). The two-
dimensional mass density of the film τ0 is calculated as the 
balloon skin mass divided by the surface area of the balloon, 
4πR2. The densities of the helium inside the balloon ρ+ and the 
air outside the balloon ρ- are calculated using the measured 
pressures and temperature, and the perfect gas law.

Table 1. Experimental parameters

Parameter Value
Balloon radius 0.32m
Balloon skin mass 3.5x10-2kg
Internal pressure (gauge) 1.27x103Pa
Atmospheric pressure 1.03x105Pa
Atmospheric temperature 291K

Figure 3. The experimentally measured driving-point response of the 
balloon is shown in black, and the red line shows the driving-point 
response predicted using the soap-bubble model, with the balloon 
parameters as inputs.

COMPARISON OF RESULTS
There are obvious differences between the experimentally 

measured response of the balloon and the response predicted 
using the soap-bubble model, and in this section we look at 
why these differences occur.

0 50 100 150 200 250 300
−60

−40

−20

0

20

40

60

Frequency (Hz)

Fr
eq

ue
nc

y 
re

sp
on

se
 fu

nc
tio

n 
(d

B re
f[m

/s
])



186 - Vol. 40, No. 3, December 2012                                                                                                        Acoustics Australia

For both balloons and soap bubbles, it is reasonable to 
assume that the gas inside the balloon is incompressible, hence 
the volume of the sphere is constant and the j = 0 breathing 
mode at 0Hz is not expected to occur. This is consistent with 
the experimental observations, as no peak at 0Hz is observed.

The first peak in the experimental results occurs at 0.63Hz, 
and visual observation of the balloon indicates that this peak 
corresponds to a low-frequency, lightly damped, rigid-body 
rocking motion of the balloon about the clamp. The balloon 
was highly sensitive to air-flow disturbances caused by nearby 
movements, making it particularly difficult to avoid excitation 
of this mode. As the bottom restraint of the balloon is not 
included in the soap-bubble model, there is no equivalent 
natural frequency seen in the predictions of the mathematical 
model.

The second peak in the experimental results occurs at 
6.8Hz, and visual observation of the balloon indicates that this 
peak corresponds to the theoretical j = 1 mode: vertical rigid-
body translation of the balloon’s centre of mass. Although the 
soap-bubble model predicts that this occurs at 0Hz, the peak 
has been shifted slightly. This is because the balloon’s neck and 
the low-tension material at the base of the balloon are acting 
together as a ‘spring’ that separates the balloon from the clamp. 

To investigate the modeshapes that occur at higher 
frequencies, the balloon was excited acoustically using an 
amplifier and speaker system at a pure tone that matched each 
of the natural frequencies. Visual and tactile observation of the 
balloon’s vibrations indicated that the 55.1Hz mode has two 
latitudinal nodal lines, arranged identically to the j = 2, n = 0 
modeshape shown in Figure  1. This suggests that the natural 
frequency at 55.1Hz is due to the j = 2 modeshape. The number 
of latitudinal nodal lines was observed to increase linearly as the 
pure tone was matched to the higher natural frequencies: three 
nodal lines at 79.8Hz (j = 3, n = 0), four at 105Hz (j = 4, n = 0), 
and five at 131Hz (j = 5, n = 0). 

There is a discrepancy between the modelling predictions 
and the experimental results at these higher frequencies, 
with the mathematical model consistently underpredicting 
the natural frequencies of the balloon. The reason for this is 
believed to be elasticity which is present in the balloon skin, 
but not accounted for in the bubble model. Grinfeld’s bubble 
model assumes that the bubble film is inelastic, as fluids have a 
constant value of surface tension, and thus there is no capacity 
for elastic energy to be stored in the skin during inflation or 
bubble deformation. The balloon, however, is made of a 
viscoelastic material that stretches as it inflates and undergoes 
changes in geometry. 

The effect of skin elasticity on the natural frequencies 
can be evaluated using energy methods. Rayleigh’s quotient 
is a means of approximating natural frequencies, and is based 
on equating the kinetic and potential energy of vibration, 
assuming negligible energy loss per cycle, that is, a lightly 
damped system [17]. The skin elasticity can be incorporated 
into Rayleigh’s quotient by the addition of an extra potential 
energy term in the numerator. (Note that this extra potential 
energy term is only relevant for those modes that involve 
deformation from the spherical ‘equilibrium’ geometry, and 
thus only occur for j > 2). This additional term results in an 

increase in the natural frequencies, thus predicting that the 
natural frequencies of the elastic balloon will be greater than 
those of a soap bubble with constant surface tension when j > 2. 
This is consistent with the results presented here.

It can be seen in Fig.  3 that as the frequency increases, 
the major peaks in the balloon’s driving point response 
begin to separate into clusters of closely-spaced peaks. This 
separation is due to the inhomogeneity of the balloon, which 
has a more pronounced effect on higher frequencies as the 
modal displacement variation occurs over shorter distances. 
Inhomogeneity exists in the shape of the balloon, the thickness 
of the balloon skin, and the surface tension in the balloon skin.

CONCLUSIONS
Bubbles have been well-studied in fluid-mechanics 

literature, and a mathematical model exists for predicting their 
natural frequencies and modeshapes. These natural frequencies 
depend on fluid properties and geometry, and the modeshapes 
correspond to the spherical surface harmonics. There is no 
mathematical model for balloon vibrations in the literature, 
and this paper has shown that the bubble model consistently 
underpredicts the natural frequencies observed for a balloon. 
This underprediction is due to the elasticity that is present in 
the balloon skin, but neglected from the bubble model. Work 
is currently underway to formulate an analytical solution for 
the natural frequencies of a spherical, elastic membrane with 
internal and external fluid interactions. 
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THEME
ACOUSTICS 2013, the annual conference of the Australian 
Acoustical Society, will be held in Victor Harbor, South Australia, at 
the McCracken Country Club, from 17-19 November 2013. 

With its theme of Science, Technology and Amenity, Acoustics 2013 
Victor Harbor will include plenary sessions addressing the impact 
of science and technology on acoustics and amenity, whether it be 
environmental or internal spaces. Other major streams will address 
airport / road / railway noise, standards and guidelines including 
those from EPAs, underwater acoustics, marine bioacoustics and 
vibration.

Acoustics 2013 Victor Harbor will provide in-depth coverage of 
many topics of interest to professionals in related fields including 
educationalists, consultants, planners, developers, government 
authorities, and EPA/noise officers

VENUE
Acoustics 2013 Victor Harbor will be held at the McCracken Country 
Club. The 4.5 star McCracken Country Club offers guests luxurious 
accommodation in the beachside township of Victor Harbor. The 
country club highlights are its golf course, day spa and the gorgeous 
panoramic view of Hindmarsh Valley. Visit www.countryclubs.com.
au/mccracken/

TOPICS
In addition to the main conference themes, Acoustics 2013 Victor 
Harbor will include sessions on:
•	 Environmental acoustics
•	 Industrial acoustics
•	 Wind turbine noise
•	 Low frequency noise
•	 Internal spaces and amenity
•	 Architectural acoustics
•	 Underwater acoustics
•	 Marine bioacoustics
•	 Legislation and standards
•	 Transportation noise

WORKSHOPS
A series of workshops are planned. The following workshop will 
be held:
•	 Flow induced noise

For up-to-date information regarding the Acoustics 2013 Victor Harbor conference, please visit the conference website:
www.acoustics.asn.au/joomla/acoustics-2013.html


