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A method for the acoustic simulation of pile driving is presented using the wavenumber integration (WI) approach, in combination with a
recently suggested array of point sources, to represent the pile. The fundamentals of the WI are briefly discussed, as are the main acoustic
characteristics of pile driving. A reference finite element model is set up to demonstrate these main features and is further compared to a
literature example, to ensure its validity. Subsequently, the obtained results are compared to the solutions from WI simulations on the same
example. The results are found to be in excellent qualitative agreement, therefore the WI technique seems to be very promising with respect
to the acoustic long range prediction in pile driving.

INTRODUCTION
The development and deployment of renewable energy

sources is one of the major tasks of our days, since the long
term shortage of fossil combustion materials becomes more
and more obvious, while the global energy demand continues
to rise. To meet this challenge the German government
has declared the aim to produce 80% of its total energy
consumption from sustainable sources in 2050, with offshore
wind energy playing a decisive role [1].

However, one of the major drawbacks of this technology
is the possible negative effect on marine wild life during
construction. With pile driving being the state of the art
foundation for most wind farms, pulses with source sound
pressure levels (SPLs) of up to 250dB1 are produced with
each hammer strike. This is likely to cause temporary or even
permanent threshold shifts (TTS/PTS) for marine mammals,
such as the harbor porpoise, who use their sense of hearing
as their primary means of orientation and communication [2].
To protect these endangered species, German authorities have
decreed threshold values of 160dB for the sound exposure level
(SEL) and 190dB for the peak SPL at a distance of 750m
from the pile [3]. To comply with these regulations, sound
mitigation measures, such as, bubble curtains or cofferdams,
need to be applied. For their design a detailed, numerical model
of the pile driving process is needed, both for the assessment of
the acoustic impact of planned future wind farms, as well as
for the apriority optimization of sound insulation measures to
minimize offshore testing time and costs.

Furthermore, apart from offshore wind farms, pile driving
takes on a key role in most near shore construction activities,
as for example the building of bridges, with comparable
possible harm to the environment, see for example Stadler and
Woodbury [4].

The relatively large dimensions of several kilometers, in
combination with the frequency range of interest stretching
up to several kilohertz, make a straight forward, discrete
modelling, for example by means of the finite element method
(FEM) impractical. Therefore a combined approach of a
discrete FE-model that models the complex processes near the

1All dB values are referenced to 1 µPascal.

pile with a propagation model that efficiently computes results
far from the pile under certain simplifications is desirable.

The present paper focuses on the latter subject, with the
wavenumber integration (WI) technique as the propagation
method. In this work the basic idea of this method illustrated
and the implemented algorithms are briefly discussed. A
reference FE-model, that is subsequently explained, is set up
and qualitatively compared to results from WI simulations and
literature values. Finally, a conclusion and an outlook on
planned model extensions are given.

WAVENUMBER INTEGRATION
The simulation of sound propagation in the ocean over

long distances via discrete methods is limited by the size of
the resulting system of equations. Therefore, a number of
alternative schemes have been developed, each involving a
number of simplifications, such as normal modes, parabolic
equation modelling, wavenumber integration, or ray tracing.
For an overview and introduction to each of these schemes, see
Jensen et al. [5].

In the present work an investigation by wavenumber
integration is used, following Schmidt and Tango [6].
Assuming a two-dimensional, rotational symmetric, stratified
(i.e. range-independent) model environment, where sources
can only exist on a vertical axis through the origin, the
Helmholtz equation reduces to

[

∂ 2

∂ r2 +
∂ 2

∂ z2
+ k2(z)

]

φ(r,z) = Sω δ (r)δ (z− zs) (1)

where k is the medium wavenumber, φ is the potential to be
solved for, Sω is the source strength, δ (x) is the Dirac function,
and zs is the source depth. The solution of equation (1) can
be decomposed into conical wavefronts around the z-axis by
means of the forward Hankel transform, from the transform pair

f (r,z) =
∫ ∞

0
F(kr,z)J0(krr)kr dkr (2a)

F(kr,z) =
∫ ∞

0
f (r,z)J0(krr)r dr (2b)
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alternative schemes have been developed, each involving a
number of simplifications, such as normal modes, parabolic
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Assuming a two-dimensional, rotational symmetric, stratified
(i.e. range-independent) model environment, where sources
can only exist on a vertical axis through the origin, the
Helmholtz equation reduces to

[

∂ 2

∂ r2 +
∂ 2

∂ z2
+ k2(z)

]

φ(r,z) = Sω δ (r)δ (z− zs) (1)

where k is the medium wavenumber, φ is the potential to be
solved for, Sω is the source strength, δ (x) is the Dirac function,
and zs is the source depth. The solution of equation (1) can
be decomposed into conical wavefronts around the z-axis by
means of the forward Hankel transform, from the transform pair

f (r,z) =
∫ ∞

0
F(kr,z)J0(krr)kr dkr (2a)

F(kr,z) =
∫ ∞

0
f (r,z)J0(krr)r dr (2b)

where kr is the horizontal wavenumber, which can be
interpreted as the factor, that determines the inclination of each
conical wavefront. The Bessel function J0 can be expressed by
the two Hankel functionsH1,2

0 by the relation J0 =
1
2
[

H1
0 +H

2
0
]

,
i.e. identically inclined cones that travel in opposite directions.
Thus, the so called depth-separated wave equation is obtained
by
[

∂ 2

∂ z2
+
(

k2 − k2
r
)

]

φ(kr,z) =
Sω
2π

δ (z− zs) (3)

Assuming a purely fluid stratification for a layered waveguide,
the solution of equation (3) in each layer m, consists of a
particular solution φ̂m, if a source is present in the layer, and the
homogeneous solution of an upward and a downward travelling
wave φ+

m and φ−
m , yielding

φm(kr,z) = φ̂m(kr,z)+A+m(kr)φ+
m (kr,z)+A

−
m(kr)φ−

m (kr,z) (4)

The 2m unknown coefficients A+,−
m have to be determined over

the 2(m−1) continuity conditions for the vertical displacement
and the pressure at the (m− 1) interfaces between the layers
and two boundary conditions, for example a pressure release
boundary at the air water interface and an infinite halfspace for
the bottom. Analytical solutions for all unknown amplitudes
can be found for layers with constant or quadratically varying
sound speed profiles, see for example Schmidt [7].

The so-called depth-dependent Green’s function g(kr,z)
between a source and a receiver can subsequently be obtained
by converting the potential φm(kr,z) to the physical quantity of
interest (e.g. the vertical displacement is defined as w= ∂φ

∂ z ). To
compute the resulting wave field, g(kr,z) has to be transformed
back from the wavenumber domain to the frequency domain, by
means of the backward Hankel transformation, which is given
in equation (2).

To automatically obtain frequency results by means of
the wavenumber integration approach, e.g. to implement it
numerically, some alterations to the described procedure are
needed. At first, the infinite integration limit in equation (2)
has to be replaced by a finite maximum value kr,max and a
horizontal wavenumber discretization ∆kr has to be chosen.
Hence, it is crucial to choose kr,max large enough to account
for all values of g(kr,z) that have a meaningful contribution
to the integral and to ensure that the wavenumber resolution
∆kr is high enough to avoid aliasing and wrap-around effects
in the transformation. For further treatment of numerical
transformation requirements, see for example Oppenheim and
Schafer [8].

In the present model, the depth-separated Helmholtz
equation (3) is solved by means of the direct global matrix
approach suggested by Schmidt and Tango [6]. The algorithm
implements an efficient, unconditionally stable solution of
the boundary value problem for the pressure p and the
displacement w, using an approach resembling finite element
discretization of the waveguide in depth. The amplitudes A+,−

m
in each layer m are computed for each discrete horizontal
wavenumber kr,n, with n = 1 ... kr,max∆kr , what in turn yields the
desired, discrete depth-dependent Green’s function g(kr,n,z) at
all specified receiver depths.

The backward Hankel transformation given in equation (2)
is numerically carried out with the help of the so-called fast
field approximation (often called fast field program or FFP)
suggested by Di Napoli and Deavenport [9]. The approximation
is based on the neglection of outgoing waves, i.e. setting the
Hankel function H2

0 ≡ 0 in the representation of the Bessel
function. Additionally, the remaining Hankel function H1

0 is
replaced by its large argument representation, see for example
Abramowitz and Stegun [10]. This yields

J0 =
1
2

[

H1
0 +��H

2
0

]

≈

√

2
πkrr

ei[krr−(m+ 1
2 )

π
2 ] for krr≫ 1 (5)

Disregarding the incoming wavefronts is only effecting the
wave field close to the source, as is the large argument
approximation of kr r which is already valid for almost all
propagation angles at a relatively short distance from the
source. The resulting wave field is therefore physically
unmeaningful at short ranges r and extremely steep propagation
angles, i.e. very small values of kr. However, steep
propagation paths will be damped out rather quickly, due
to the multiple reflections at the interfaces and not yield a
significant contribution for large values of r and, by definition,
the propagation model is used to determine the field at relative
large source receiver separations. Hence the use of the fast field
approximation is justified in this context.

The main benefit is that the full Hankel transformation,
as given in equation (2), reduces to a Fourier transform, as
in the FFP representation in equation (5) such that only one
exponential function of the argument kr r, multiplied by a
constant is left. By doing so, existing, numerically very
efficient algorithms can be used for the evaluation of equation
(2).

Finally, to better compare the frequency domain results
obtained by wavenumber integration with the time domain
results from the FE-model, an inverse Fourier transformation
is carried out. The convolution of the source signal with
the impulse response of the receiver thus reduces to a simple
multiplication of the source spectrum Sω with the Green’s
function gω , and is given by

p(r,z, t) =
∫ ∞

−∞
Sω gω(r,z)e−iωtdω (6)

For an extensive treatment of time domain transformations and
the according requirements see Oppenheim and Schafer [8].

A tangible illustration of the presented theory of
wavenumber integration can be found in figure 1, where it is
applied to a simple Pekeris waveguide. As can be seen in figure
1(a), a source is placed in the middle of a fluid layer with a
thickness of 100m, which is enclosed by an upper pressure
release boundary, i.e. p(r ,z= 0) ≡ 0, and a lower, infinite
halfspace of a fluid with higher density and sound speed. In
figure 1(b), the solution to equation (4) given by equation (3)
is plotted for the receiver depth zR = 30m for all values of
the horizontal wavenumber kr,n, at an exemplary frequency
of f = 100Hz. Applying the forward Hankel transformation
given in equation (2) to this wavenumber spectrum yields
the pressure p( f ,rR,zR). Upon repetition for all frequencies
of interest, the frequency response shown in figure 1(c) is
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obtained. Convoluting this response with a certain source
output signal, here a single sine wavelet, by means of the
inverse Fourier transformation given in equation (6), the time
series of the receiver p(t,rR,zR) is generated. Now the arrival
of the direct wave, the first inverse reflection from the pressure
release boundary and further reflections can be distinguished,
for a full contour plot of the problem see, for example, Lippert
et al. [11].

REFERENCE FE-SIMULATION
In this section a basic finite element-model (FE model) is set

up to model the acoustics of pile driving. The obtained results
are qualitatively compared to an earlier publication of Reinhall
and Dahl [12] and used to verify the results obtained with the
wavenumber integration.

Simplifying, the model is set up as two-dimensional and
axis symetric, assuming a perfectly centered hammer strike.
Roughly assuming North Sea offshore conditions, the pile has a
total length of 65m, whereof 20m are standing in the seafloor,
40m are surrounded by water, and 5m protrude from the
sea surface. It has a diameter of 3.5m and a wall thickness
of 80mm. Both the sea bottom and the water column are
modeled as fluids, assuming a density of ρw = 1000kg/m3

and a sound speed of cw = 1450m/s for the water phase.
The bottom is assumed to be a sandy fluid with a density
of ρb = 2034kg/m3 and a sound speed of cb = 1836m/s,
taken from Hamilton [13]. Additionally, the pile itself is fixed
with spring-damper elements, to account for the fact that the
vast majority of the strike energy is mechanically absorbed
by the intrusion of the pile into the seabed. This somewhat
coarse approximation to the real interaction between pile and
soil, and the error resulting from it, is accepted, as the results
are only to be compared qualitatively. The sea surface is
assumed to be a perfect reflector, due to the large difference
in impedance between air and water, as is the surface of the
protruding part of the pile. The outer boundaries of the model
are enclosed by non-reflecting boundary conditions to avoid
artificial reflections, thus modelling the surroundings as an
infinite layer above an infinite half space. The hammer strike is
modelled via a pressure boundary condition. The time-pressure
distribution is derived from a simple analytical approach,
modelling the pile as a damper with a pile characteristic
impedance, acted upon by an accelerated hammer mass, as
analytically derived by Deeks and Randolph [14].

The results of three different time steps are depicted in
figure 2, where the distinct inclined wavefronts, typical to
pile driving can be identified. As shown by Reinhall and
Dahl [12] this main contribution of the high sound pressure
levels, encountered in acoustic pile driving measurements, can
be explained by the occurrence of Mach waves. Typically,
Mach waves are associated with jets flying at supersonic speed.
Assuming the jet to be an idealized point source, the emitted
wavefronts, start to overlap and superimpose each other as the
speed of the source is higher than the radiation velocity of the
pressure waves (p-waves). The result is a so-called Mach cone,
which basically is a high energetic, conical wavefront.

The acoustic radiation from pile driving follows a similar
pattern. The hammer strike induces a longitudinal or pressure
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Figure 1. Graphic representation of a time series computation with
wavenumber integration

wave that travels along down the pile, which in turn triggers
a so-called quasi-longitudinal displacement wave. This wave
type occurs due to the fact that in solid media, each longitudinal
deformation is also coupled to transverse deformation via
Poisson’s ratio ν , quasi-longitudinal means that the wave is
propagating in the longitudinal direction in principle, but with
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wave that travels along down the pile, which in turn triggers
a so-called quasi-longitudinal displacement wave. This wave
type occurs due to the fact that in solid media, each longitudinal
deformation is also coupled to transverse deformation via
Poisson’s ratio ν , quasi-longitudinal means that the wave is
propagating in the longitudinal direction in principle, but with

a transverse component also. In relative slender structures,
such as the hollow cylinder regarded here, this transverse
deformation component can partly be found to be a surface
wave. Additionally, a plate or a rod, for example, have a
lower stiffness than an infinite medium consisting of the same
material, therefore the propagation speed of an impulse lies
below the nominal value, see for example Herbst [15]. As
the displacement itself is relatively small, it can be assumed
to be a point source. If the the pile is simplified as a rod,
the propagation velocity of the quasi-longitudinal wave can
be determined as cql =

√

E/ρ , which, depending on the steel
used, yields values of approximately cql ≈ 5000m/s. Hence,
the analogy to the above mentioned jet example becomes clear,
relative to the propagation velocities of the p-waves in the
surrounding fluids, the point source is always travelling at
supersonic speed, thus producing Mach cones in the same way
as described above.

In figure 2, normalized acoustic pressure contours for three
exemplary time steps after the hammer impact are depicted.
In figure 2(a) the impulse has travelled solely in the water
column, developing a clearly identifiable inclined wavefront,
e.g. a 2D-slice cut from a Mach cone. The inclination of the
wavefront follows directly from the ratio of the propagation
velecity of the impulse in the pile cql and the sound speed
in the surrounding fluid c f luid . In this case, the inclination
follows as φw = arcsin(cw/cs) ≈ 16deg. In figure 2(b) the
pulse has passed the interface between the two media and is
running in the bottom, the according inclination below the
mudline is φb = arcsin(cb/cs) ≈ 20deg. The broadening of
the resulting wavefront can partly be explained by the higher
sound speed cb in the bottom. In the last figure 2(c) the pulse
has reached the lower end of the pile, has been reflected and
is now travelling towards the top again. Here one can see
that the pressure impulse is subject to a phase shift of 180 deg
when it is reflected, due to the drop in impedance between
the two media. The less pronounced wavefronts in the bottom
are probably partly caused by sound energy leaking from the
inner fluid and the inversion of the pulse at the very end of the
pile. Additionally imperfections at the nominally non-reflecting
boundaries of the model seem to be an issue, as for example
discussed by Deeks and Randolph [16].

WAVENUMBER INTEGRATION
FOR PILE DRIVING ACOUSTICS

In this section the results produced in the previous section
are reproduced with a propagation method, to allow for
predictions at large distances from the pile. Based on the
exemplified characteristics, Reinhall and Dahl [12] propose
a method to model the sound radiation from pile driving by
means of a phased point source array. The single contributions
from each frequency is determined by means of parabolic
equation (PE) modelling. In this contribution, their approach of
a point source array is realized with the wavenumber integration
technique, described earlier.

The basic idea of the suggested approach is to reproduce
the identified Mach waves, by a number of point sources along
the pile axis with a fixed spacing. The emitted signal from
each of the n = 1...N point sources starts with a time delay of
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Figure 2. Pressure field contours from the FE model after hammer
impact (normalized)

∆tn= zs,n/cql , resulting from the fact that the quasi-longitudinal
impulse travels down the pile with a propagation velocity of cql ,
which in turn means that at the source position zs,n no signal
will be emitted before t = ∆tn.

The emitted signal from each point source is determined as
a single sine wavelet with a frequency of fs = 300Hz, which
is found to be a good approximation for the first wavefront
radiated from the pile in the FE simulations. The pile is
represented by 13 point sources distributed between the sea
surface and the end of the pile, with a spacing of ∆zs = 5m. All
respective model or material parameters are identical to those
described above. The normalized results of the WI simulation
are depicted in figure 3.

Before discussion and comparison of the results, some
preliminary remarks need to be made. As mentioned above,
only the first wavefront is accounted for, hence the noise
occurring behind this wavefront cannot be related to the
secondary emissions from the FE-results. Also, the region
very close to the pile, i.e. the first few metres, are physically
unmeaningful, due to the far field approximation discussed
earlier. Finally, the relatively wide spacing of the sources leads
to somewhat inhomogeneous wavefronts at short distances
from the sources, due to the strong curvature. But as the WI
is generally used to evaluate the field at some distance from the
pile, this problem becomes insignificant, as can be seen from
the results. In contrast to its described common application, the
WI is subsequently used only in the same range as the FEM to
compare the results.

Comparing the simulations, with these reservations, the
high consistency of the results becomes obvious. In figure 3(a)
the impulse is travelling solely in the water column, while it
has reached the end of the pile in figure 3(b). The distinct
inclinations of the Mach waves in both media are the same for
the FE- and the WI-model, as is the broadening effect of the
wavefront in the lower halfspace. In figure 3(c) the impulse
has been reflected at the end of the pile and travelling upwards
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Figure 3. Pressure field contours from the WI-model after hammer
impact (normalized)

again, with the expected reversed phase.
It can be seen that developing wavefronts become smooth

after approximately 10m. Also, as was the case in the
simulations above, the wavefront in the bottom is not as
pronounced as it is in the water phase. However, the degree
of disfiguration is clearly lower, resulting mainly from the last
point source at the pile, which hints to a problem with the
non-reflecting boundaries in the FE-model.

Concluding, it can be said that the main characteristics of
acoustic pile driving radiation, with the presented WI approach,
can be qualitatively reproduced. This could be achieved by
means of a relatively simple modelling approach. Therefore,
a further enhanced wavenumber integration model is believed
to show great promise in the context of acoustic long range
predictions of SPLs from pile driving.

CONCLUSIONS AND PROSPECTS
A qualitative modelling of pile driving noise with the help

of wavenumber integration is presented and its fundamentals
are briefly discussed. To be able to verify the obtained results,
an FE model is set up and, first, checked against simulations
of Reinhall and Dahl, who identified the main characteristics
in pile driving acoustics to be the occurrence of Mach cones.
Then, an approach to model the same radiation with the help of
parabolic equation modelling, put forward by the same authors,
is carried out using wavenumber integration. The qualitative
results of the FE and the WI model are compared and found to
be in excellent agreement.

As the next step, the comparison of the results on a
quantitative basis is planned. After this verification, a validation
against extensive planned offshore measurements is envisaged.
Therefore, the model is supposed to incorporate both rough
boundaries and ambient noise, to account for the actual sea state
and weather conditions during the measurements.
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