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INTRODUCTION
In the year of 1946 a physicist by the name Dennis Gabor 

proposed the decomposition of a continues-time signal into 
a set of shifted and modulated elementary discrete signals 
[1]. The spectrum in this case is obtained by multiplying the 
analysis signal by a Gaussian window of a chosen length, 
the Fourier transform is then, calculated for this particular 
function. The Gabor transform is a time-frequency distribution 
with a number of useful applications such as speech, seismic, 
and image-processing signals that have characteristics of 
a time-varying spectrum not appropriate to analyze in the 
Fourier transform method [2-4]. The main advantage of this 
technique is in the ability to detect frequency contents changes 
with respect to time, which may be very important in cases, 
such as medical imaging where diagnoses of abnormalities 
are related to time. Another example is detection of localized 
faults in mechanical and electrical systems that also vary with 
time [5,6]. This is in contrast to the classical Fourier analysis, 
which gives information about the overall spectral content of 
a particular signal without providing information about how 
these frequencies evolve in time.  

In general, the discrete Gabor transform (DGT) can be 
thought of as a windowed Fourier transform, which provides a 
representation of a signal in time and frequency simultaneously. 
The Gabor coefficients are calculated as the inner product of 
the test signal and a single analysis window used to calculate 
the transform [7,8]. A major advantage that DGT offers is the 
ability to reconstruct the original signal. This is accomplished 
by summing the translated and modulated parts of the test signal 
obtained by the fixed synthesis window after being weighted 
by the Gabor coefficients. The Gabor transforms also offers 
the ability to change the time-frequency distribution (TFD) of 
a signal by adjusting the magnitude of the Gabor coefficients 
and recovering the original signal. This procedure is used as 
a time-varying filter for non-stationary signals that cannot 
be recovered in the time or frequency domain. The result of 

reconstruction can also be compared with the original value for 
an accuracy test of the Gabor transform representation.

In addition, the inverse discrete Gabor transform (IDGT) 
has been implemented by a number of researchers for various 
applications such as seismic de-convolution proposed by 
Margrave [9]. In this approach, a non-stationary filter was 
accomplished by modifying the Gabor time-frequency 
decomposition in order to recover the desired seismic signal. 
In another procedure of time-frequency synthesis, Xiang et al. 
[10] proposed an iterative time-varying filtering algorithm in 
the discrete Gabor domain. A non-stationary chirp test signal 
was extracted from a wide-band noise by applying an iterative 
algorithm, then comparing the result with the noisy waveform. 
In order to decrease computational complexity, Tao et al. [11] 
suggested a block time-recursive algorithm to find the discrete 
Gabor coefficients then, extract the original signal for both the 
critical sampling and the over-sampling cases. 

This paper is organized as follows. In Section 2 a brief 
overview of the discrete Gabor transform (DGT) is provided. 
The inverse discrete Gabor transform (IDGT) and its 
applications to signal reconstruction is presented in Section 
3. In the next Section 4, experimental results and findings 
including implementation procedure for this experiment are 
outlined. In the final part of the paper, Section 5, analysis of 
results and conclusions are presented.

THE DISCRETE GABOR TRANSFORM (DGT)
In this section, a review of the discrete Gabor expansion 

is presented, before implementation procedure is conducted in 
the later part of the experiment.

The discrete Gabor expansion
For a discrete-time finite, real and periodic function x(n) 

with a period L, the Gabor expansion can be written in the 
following form [7,12]

In this paper, the Inverse Discrete Gabor Transform (IDGT) is proposed for signal recovery buried in board-band non-
stationary noise. Time-frequency masking filtering technique is implemented to reject the noise from corrupted speech 
while at the same time maintaining the desired waveform. A synthetic multicomponent non-stationary test signal made 
up of two chirps was first used to simulate noise; the signals were then separated using this technique. Four English 
speech signals recorded in different environments such as airport, restaurant, and train buried in wide-band noise were 
reconstructed. The extracted signals were then compared with the original ones in terms of cleanness and noise removal. 
The implemented procedure is suitable for this type of wide-band non-stationary interference, which cannot be canceled in 
the Fourier (frequency) or time domain.
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x(n) = a(m,k)h(n,mN)eΣ Σ
M -1 N -1

m =0 k =0

j 2πkn
N  (1)

where M is the total number of time sampling points and N is 
the number of points sampled in frequency. The values of N 
represents the time sampling interval while M is the frequency-
sampling interval.   

On the other hand, the coefficients a(m,k) are calculated 
according to the following formula

a(m,k) = x(n)γ(n,mN)eΣ
L -1

n =0

j 2πkn
N

 
(2)

Note that in the above equation the equality L = NM = NM  
holds. The critical sampling point occurs when N M = NM = L 
where the number of samples from the original signal is equal 
to the number of Gabor coefficients. Under sampling occurs 
when NM >L which can leads to information loss. Therefore, 
for perfect reconstruction of the original signal, the following 
condition must be satisfied NM > L.

Moreover, both the analysis window h(n) and the 
synthesis window γ(n) must be real, periodic, satisfying the 
biorthogonality condition given by: 

       
h(n) = h(n + mN)e        γ(n) = (L / MN)δmδkΣ

L -1

n =0

j 2πkn
N

 
(3)

where 0 < m > M -1, 0 < k > N -1 and δ(n) denotes the Dirac 
delta function. The above expression in Eq. (1) is defined as 
the inverse discrete Gabor transform; while Eq. (2) is known 
as the DGT.

THE INVERSE DISCRETE GABOR 
TRANSFORM (IDGT)

The de-convolution of the discrete Gabor transform refers 
to recovering the original signal from the time-frequency 
distribution. In classical Fourier analysis if the signal is narrow-
band and stationary, then linear filtering is implemented to 
recover the original signal. In this case, a simple procedure 
made up of a band-pass filter covering the band of the signal is 
used to recover the desired output from the wide-band-noise. 
In the frequency domain, the band-pass filter transfer function 
is multiplied by the Fourier transform of the noise as a form of 
a mask for the spectrum. Then, the inverse Fourier transform of 
the result is calculated to recover the noise-free signal.

However, when dealing with non-stationary signals such as 
speech, biomedical or seismic data buried in noise, traditional 
linear filtering cannot be used.  In this case, a different approach 
known as time-frequency filtering or masking is utilized 
to extract the original signal. In the discrete Gabor method, 
reconstruction of the signal x(n) can be obtained from Eq. (1) 
after satisfying the conditions mentioned in the above section. 
That is, the inverse FFT of the coefficients a(m,k) is computed 
for each index k, then taking the point-by-point product with 
the synthesis window h(n) to obtain a specified portion of the 

output. To recover the whole signal, the windowed slices are 
summed over the index m. 

Consequently, the above procedure can be used for time-
frequency filtering by modifying the Gabor coefficients used 
to calculate the time-frequency distribution prior to signal 
reconstruction. This is known as time-varying filtering where 
two or more non-stationary signals can be separated and the 
desired one is synthesized. A number of applications take 
advantage of this particular technique for the objective of signal 
recovery. Some of these examples include a non-stationary 
seismic data de-convolution designed to remove unwanted 
earth attenuation effects and source signature [10]. Another 
example is the implementation of a recursive Gabor filter for 
image processing with the least possible number of operations 
[13]. An important application is speech enhancement, where 
this approach is exploited in the time-frequency representation 
to remove inherent noise and recreate the uncorrupted time 
wave.

EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the IDGT is implemented as a time-

varying filter for noise removal and enhancement of speech. 
First a synthetic non-stationary signal made up of tow chirps 
that cannot be separated using traditional linear filtering in 
the Fourier (frequency) or time domain is used to simulate 
a noise-corrupted waveform. One chirp is treated as noise 
while the second simulates the desired time-series wave. 
This is illustrated in Figure 1 showing the time-frequency 
representation (TFR) of the test chirp. On the other hand, 
Figure 2 shows the two chirps’ distribution with one of the 
signals depicting noise presence. The original signal is then 
recovered or separated from the time-frequency distribution by 
utilizing a masking procedure to remove the present noise. The 
result is given in Figure 3 with the noise-free signal recovered 
using the proposed masking technique. The time series plot of 
error between the original and recovered signals is also shown 
in Figure 4 providing a fairly accurate result. 

In order to create a suitable mask, the time frequency 
distribution (TFD) of the distorting noise is set to zero while 
at the same time the desired part is multiplied by unity. This 
will keep the desired components inside the mask and reject 
other parts of the signal. The calculation of an appropriate 
time-frequency mask can be done according to the following 
procedure:

M (n, m) = {1, (n, m)  C
0, otherwise  

(4)

The value of C represents the pass region of the time-
frequency mask. Hence, the final result of the masked time-
frequency distribution is in the form:

S (n,m) = S (n,m) M (n,m) (5)

where S(n,m) stands for the result of masking, S(n,m) is the 
corrupted value, and M(n,m) is the mask function. The signal 
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can then be reconstructed using the inverse GDT from the 
masked output. In order to obtain an appropriate mask, a 
threshold can be calculated as the average value of the peaks 
in the noise- corrupted value. It is important to note that time 
frequency distributions are not one to one (redundant) or onto 
transformations. As a result, not every signal in the joint time-
frequency representation corresponds to a signal in the time 
domain. 

Furthermore, as an application to the above time-frequency 
masking procedure, speech utterances corrupted with different 
kinds of noise are synthesized for the objective of interference 
cancellation. This type of noise is very similar to the clean 
signal, which makes the task of removal very difficult or 
impossible using traditional Fourier techniques. The first 
example is the word “long” spoken by a female and recorded 
inside a talking crowed, which of course will affect the fidelity 
of speech. The signal length is 27 ms, with a sampling rate of 
11 kHz. The original noise-free time-frequency distribution is 
illustrated in Figure 5. On the other hand, Figure 6 depicts the 
noisy speech, while Figure 7 is the masked result with most 
of the present noise removed. The error between the extracted 
waveform and the original is shown in Figure 8. As can be seen 
from this output, the recovered signal is a good approximation 
of the original speech with a very small difference.  

As a second example, the word “down” spoken by a male 
of length 355 ms has a sampling rate of 8 kHz with added noise 
from an airport environment. The time-frequency distribution 
is depicted in Figure 9 for the clear signal; while Figure 10 
clearly shows noise presence in the time-frequency plane. The 
following Figure 11 depicts the masking result of the time-
frequency distribution after interference cancelation. The 
extracted waveform represents a very good approximation of 
the original as Figure 12 illustrates. 

The above technique is also implemented for two other 
English speech examples. The next one is the word “great” 
spoken by a female and corrupted by a moving train sound. 
This has a length of 215 ms and a sampling rate of 11 kHz. The 
outputs are displayed in Figures 13, 14, 15, and 16 showing 
the error between the recovered speech and the original signal. 
The fourth and final example is the word “pleasant” spoken by 
a male inside a noisy restaurant atmosphere. In this case, the 
signal has a length of 420 ms with a sampling rate of 8 kHz. 
The answers are displayed in Figures 17, 18, 19, and 20. The 
extracted wave in this example also provides a promising 
outcome when compared with the clean signal.  The overall 
results are also displayed in Table 1 representing signal to noise 
ratio (SNR) of individual speech signals before and after the 
proposed TFR filtering procedure. A significant improvement in 
the speech quality and noise reduction is achieved.

Table 1.  Signal to noise ratio (SNR) in dB of the four speech utterances in different noisy environments

Test Word SNR Before Filtering SNR After Filtering
Long (crowed noise) 1.4804 dB 6.3620 dB
Down (airport noise) -1.6488 dB 6.2684 dB
Great (train noise) 5.5486 dB 9.2970 dB
Pleasant (restaurant noise) 1.1858 dB 8.7993 dB
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Figure 1. Time-frequency representation of the noise-free test chirp 
signal

Figure 2. Time-frequency representation of the test signal with noise 
present
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Figure 3. Time-frequency representation of the recovered test signal 
with noise removed

Figure 4. Plot of error between the original and the recovered signal

Figure 5. Time-frequency representation of the noise-free speech 
signal “long”

Figure 6. Time-frequency representation of the noisy speech signal 
“long”

Figure 7. Time-frequency representation of the recovered speech 
signal “long” with most of the noise removed

Figure 8. Plot of error between the original speech signal “long” and 
the recovered signal
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Figure 9. Time-frequency representation of the noise-free speech 
signal “down”

Figure 10. Time-frequency representation of the noisy speech signal 
“down”

Figure 11. Time-frequency representation of the recovered speech 
signal “down” with most of the noise removed

Figure 12. Plot of error between the original speech signal “down” 
and the recovered signal

Figure 13. Time-frequency representation of the noise-free speech 
signal “great”

Figure 14. Time-frequency representation of the noisy speech signal 
“great”
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Figure 15. Time-frequency representation of the recovered speech 
signal “great” with most of the noise removed

Figure 16. Plot of error between the original speech signal “great” and 
the recovered signal

Figure 17. Time-frequency representation of the noise-free speech 
signal “pleasant”

Figure 18. Time-frequency representation of the noisy speech signal 
“pleasant”

Figure 19. Time-frequency representation of the recovered speech 
signal “pleasant” with most of the noise removed

Figure 20. Plot of error between the original speech signal “pleasant” 
and the recovered signal
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CONCLUSION
The Inverse discrete Gabor Transform was implemented 

to recover corrupted speech signals using a time-frequency 
masking approach. The main contribution of this work is that 
the speech signal is buried in a wide-band non-stationary noise 
very similar in characteristics to the original wave form, which 
makes it impossible to recover using classical Fourier transform 
techniques. First, a synthetic non-stationary multicomponent 
chirp was tested then; four different examples of English 
words recorded in noisy environments were used to evaluate 
the effectiveness of the proposed procedure. The original 
signals were then reconstructed from the time-frequency 
distribution of the noise-infected speech after processing. The 
recovered waveforms were compared to the originals in terms 
of fidelity or noise presence and were found to be a very good 
approximation of the recorded clean ones. Since this type of 
noise cannot be separated from the desired signal in time or 
frequency; this technique provides a practical alternative to the 
traditional methods that are not capable of resolving this issue.
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