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INTRODUCTION
The honeybee (Apis-mellifera) [1] is unquestionably 

considered as the most important and signifi cant contributor 
among the animal pollinators, playing an essential role in the 
prosperity of the world’s ecosystems and indeed to life itself. It 
is estimated that the honeybee is responsible for the pollination 
of over 90% of global commercial pollination services, and 
approximately 35% of the world’s food crops [2]. The honeybee 
is probably best known for its production and storage of honey; 
however the economic value of the pollinator is not attributed 
solely to the hive produce, but largely to the products derived 
as a direct result from honeybee pollination. This constitutes 
an estimated $2 billion in revenue per year for Australia and 
$198 billion worldwide. In recent times, there have been rapid 
increases in agricultural development and human population, 
both of which are heavily dependent on the success of the 
honeybee industry. This has led to greater than ever demands 
for honeybee pollination, placing mounting strain on managed 
honeybee colony populations worldwide [3].

Conversely to this trend of increasing global demand, bee 
colonies around the world are under an increasing number of 
threats from a range of sources. The rapid spread of exotic 
pests such as the Varroa-destructor, better known as the Varroa-
mite, is undoubtedly the biggest mortal threat to honeybees [4]. 
The Varroa-mite has already proven to be extremely damaging 
to the international honeybee industry as it has advanced 
throughout the world, and alarmingly, since the fi rst reports of 
the arrival of Varroa-destructor in New Zealand in early 2000, 
Australia is now the only country free of the pest.
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Figure 1. Acoustic signatures of honeybee colonies

Invasive pest surveillance
Currently there are surveillance programs operating on a 

state-by-state basis aimed at the early detection of the Varroa-
mite and other foreign pests and threats arriving in Australia. 
This current beehive surveillance and monitoring is achieved 
through the use of bait hives, which are located around Australia’s 
major harbours and ports. These hives are situated such that any 
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foreign bee infested with unwanted diseases or pests arriving at 
a port will inhabit the bait hives before spreading further. It has 
been shown [5] that the early detection of pests is imperative if 
an infestation is to be contained and eliminated. Though there 
are treatments available, it is commonly agreed upon within 
the honeybee communities that the prevention of an outbreak is 
better than a cure. Through regular manual examinations of the 
bait hives and the bee colonies that settle in them, inspectors are 
able to ascertain if there is any potential threat and subsequently 
intervene with the necessary steps to eliminate the threat. To 
satisfy this requirement of increasing surveillance intensity 
with the current method of monitoring would necessitate 
large numbers of qualifi ed inspectors to travel to every site 
individually. This would require large amounts of manpower, 
technical expertise, time and consequently money in order for 
their continued success. The lack of any better option is largely 
a result of the honeybee industry residing outside of the focus of 
modern technological developments. 

Technological intervention
Information from relevant sources [2, 6] have indicated that 

honeybees change their acoustic behaviour as a result of being 
exposed to certain stressors. This being so, it is reasonable that 
a potential solution to the pest infestation problem could be 
to use wireless sensor devices that can automatically detect 
the presence of infected colonies based on the colony’s 
measured acoustic signature. Such a device would operate as 
a remote surveillance system and would aid current and future 
surveillance programs by providing the inspectors with tools 
such as advanced warnings and detailed analysis of hive health. 
In close to real-time, the system could provide alerts as to the 
arrival of a new colony to a bait hive, as well as the current 
health status of the new colony. This information would ideally 
include as much detail as possible regarding the what, where 
and when such warning has occurred. Consequently, this would 
allow inspectors to utilise their time in the most effi cient and 
informed way, could potentially save large amounts of money, 
and revolutionise national biosecurity monitoring programs.

BACKGROUND AND RELEVANT WORKS
Honeybees have been observed to produce a variety of 

different sounds [7, 8] as forms of communication within the 
colony. Most of the sounds produced have been characterised 
by a low fundamental frequency between 300 and 600Hz and 
their corresponding harmonics [8]. The sounds produced by 
honeybees are one of the primary forms of communication 
within the colony; however communication is also achieved 
through the use of chemical means [9]. As shown in Figure-1, 
there is a range of sounds of different acoustic frequencies 
used by bees for a variety of reasons. Interestingly to note, 
it is not only the range of frequencies that are produced that 
determine the meaning of the noise, but also the acoustic 
structure in terms of signal pattern. The accurate quantifi cation 
of the characteristics of these signal patterns and frequency 
ranges will be the key in developing a system that can identify 
possible threats to the hive and colony.

Various studies [10, 11] have shown that the health, status 
and activity of a honeybee colony can be determined through 

the analysis of the acoustic characteristics of the hive. Through 
the analysis of these studies it becomes unquestionable that 
honeybee hive acoustics change to refl ect the current status and 
circumstance of the hive. The idea of this project was to design 
and develop a system which could understand and recognise 
the different acoustic characteristics produced by a healthy 
colony and a colony infested with Varro-mites.

SYSTEM OVERVIEW
This section deals with the main components of the beehive 

monitoring system (system architecture) and acoustical analysis 
techniques executed using dedicated acoustical software.

System architecture

Figure 2. Acoustical detection process for honeybee colonies

The proposed honeybee monitoring system is designed to 
automatically acquire, process, and analyse audio data from 
remote honeybee hives to help alleviate the time and energy 
required for manual monitoring. To achieve this, the system 
must be as reliable and self-functional as possible. The key 
components of the honeybee monitoring system involve:

Sensor node
The Beagleboard [12] is an ideal platform for the honeybee 

system due to its miniaturised size (remote deployment) 
and intensive computational power (required for acoustical 
analysis tasks).

Sensors
The bee acoustics are acquired by using an electret 

microphone situated within the hive of the honeybee colony. 
The sound (honeybees) is picked up by the microphone and 
processed by the beagleboard using acoustical algorithms in 
order to discriminate between a healthy or infected hive.

Radio transmission
A low-power radio transceiver [13, 14] (Zigbee Link) is 

used to transmit the acoustical data from remote beehive sites 
to gateways. The data contains alarm messages in case an 
infection is detected, and diagnostics status to verify system 
operation (e.g. remaining power percentage).

Algorithm for acoustical analysis
The process depicted in Figure 2 is used to analyse the 

acoustic signatures of a honeybee colony. Training data 
(control) consist of sound samples of healthy and infected bee 
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colonies. Acoustical comparison between training and live data 
(collected in real-time) will allow us to determine if the acoustic 
fi ngerprint of the hive correlate to the acoustic fi ngerprints of a 
hive infested with pests.

Acoustical analysis techniques
This section describes the techniques used to determine the 

acoustical properties of a beehive colony.

Acoustic features
The most commonly used acoustical features in acoustical 

analysis applications (e.g. honeybee monitoring) are:
• Peak Frequency (PF): PF can be defi ned as the frequency 

contains the highest (most) power for a given window of 
audio.

• Spectral Centroid (SC): SC is also known as the mean 
frequency – or gravity center – of the power spectrum of 
a frame.

• Bandwidth (B): The bandwidth of a signal is the range of 
frequencies present in a signal.

• Root Variance Frequency (RVF): The RVF feature 
component describes the convergence of the power 
spectrum for a given sample.

Data discrimination
One of the most fundamental goals of the honeybee 

monitoring system is to be able to accurately determine the 
status of hive health purely through the analysis of its acoustic 
fi ngerprint. The honeybee system is designed with binary 
categorical discriminant analysis functionality (rather than 
regression analysis). The classifi cation tools used to perform 
this type of analysis are:
• Principle Component Analysis (PCA): PCA is an 

exploratory data analysis tool used for making predictive 
models [15]. Commonly implemented as a form 
of dimensionality reduction, it involves fi nding the 
eigenvalues and eigenvectors of the covariance matrix of 
the meansubtracted data set [8, 11, 16].

• Support Vector Machines (SVM): SVM are machine 
learning models built around algorithms designed to analyse 
data and recognise patterns. The application of SVMs to 
binary classifi cation problems have been shown to perform 
exceptionally even for large dimensional vectors [15].

• Linear Discriminant Analysis (LDA): LDA is used to fi nd 
the linear combination of a set of features which maximises 
the separability between the classes [17].

ACOUSTIC MODEL
This section describes the acoustical model used to analyse 

the audio signatures of beehive colonies. The aim is to be 
able to differentiate between a healthy or an infected beehive 
colony. The main processes involved are: a. control training, b. 
audio classifi cation, and c. feature discrimination.

Training
The classifi er training relies on input-signals from known 

data-sets (various infected/healthy beehive sound samples) 
in order to build accurate training data-sets [18, 19]. Four 
approaches were taken to perform the training of the classifi ers. 
Firstly, the feature sets were passed through a PCA algorithm 
which narrowed the four features down to two. This reduced 
feature set is then put through an LDA algorithm and as well 
as an SVM algorithm. In these two scenarios, the LDA and 
SVM classifi ers use the features chosen by PCA to establish 
their discriminant functions. They will be referred to herein as 
PCA_LDA and PCA_SVM.

Table 1. Selection from the feature list of the control data-set. Label 
“1” represents infected samples. Label “−1” represents healthy 
samples

FID PF 
(Hz)

SC 
(Hz)

B 
(Hz)

RVF 
(Hz)

Label

1 1036 960 146 7211 1
2 998 971 168 7098 1
3 942 954 198 7239 1
4 1052 1025 125 4210 -1
5 1114 992 157 4767 -1
6 1028 1011 158 4709 -1

In the other two methods, the original feature sets are passed 
into an LDA algorithm and an SVM algorithm without fi rst 
going through PCA. This means that the results of the last two 
methods are purely dependant on the features chosen by LDA 
and PCA. The idea of this analysis was to compare which of the 
four overall methods had the highest accuracy of classifi cation, 
and thereby establish the best method of generating classifi er 
functions for distinguishing between infected (labelled as 1) 
and healthy (labelled as -1) honeybee colonies as depicted by 
Table 1.

Classifi cation
Both the LDA and SVM classifi cation algorithms return 

prediction values for the given test data after applying their 
respective methods [20, 21]. The test data consist of a 10 second 
recording of either healthy or infected honeybee hive samples. 
The result of the prediction for both methods is an array of the 
same length as the number of frames observed. This means the 
classifying functions output either a ‘1’ or a ‘1’ for each frame 
depending on whether that frame matches the fi ngerprint of an 
infected hive or a healthy hive as seen in Table 1.

Implementation
A PCA algorithm was developed so that the feature set 

extracted from the system could be tested for suitability for 
use in a classifi er system. To do this, a number of control 
experiments were conducted in order to establish what types 
of results could be expected from different inputs. The fi rst 
experiment was conducted primarily to confi rm that the set 
of acoustic features that had been extracted for use in the 
system were suitable enough to allow reasonably unique and 
independent fi ngerprinting functions to be generated for sets of 
predominantly similar audio data.
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Figure 3. Separability of acoustic features using Principle Component 
Analysis (PCA) - healthy (blue) / infected (red) / first-component 
(RVF) / second-component (B)

As depicted by Figure 3, there is a clear separation (i.e. 
minimal overlapping between the coloured regions/points) 
between healthy and infected features in the acoustical domain 
of a beehive colony (mainly between RVF and B). This 
analysis confi rms the suitability of PCA in determining the 
highest abnormalities in the acoustical spectrum components 
(i.e. healthy and infected feature separation). The next stage 
involves determining the linear relationship (classifi er function) 
that best describes the highest degree of separability between 
healthy and unhealthy colonies using the principle components 
selected by the PCA. Once established (i.e. relationship is 
found), a set of test data is fed into the classifi er function in 
order to make future predictions on the status of the bee colony 
involved.

Figure 4. Classification analysis using Linear Discriminant Analysis 
(LDA) - healthy (blue) / infected (red)

Figure 4 shows the plot of the discriminant function 
generated by the LDA algorithm. The results indicate the 
best separation between healthy (blue) and infected (red) 
samples are derived from the bandwidth and root variance 

frequency components. The dashed line shows the threshold 
of classifi cation based on the features chosen (i.e. B & RVF) to 
generate the corresponding plot.

In the next section, we will perform real-life experiments to 
test the validity of our acoustic model in detecting the presence 
of the Varro-mite pest in beehive colonies.

EXPERIMENTAL ANALYSIS
One of the most important factors to keep in consideration 

during the analysis of these results is that the training and test 
data was limited to a small number of low quality samples. 
This essentially means that the sounds had gone through a 
number of re-sampling processes by the time it was recorded 
onto our system for analysis, and as such, they had obviously 
undergone a signifi cant degradation in quality. Additionally, 
with limited samples available, the choice was made to use the 
5 healthy honeybee hive recordings obtained from [22] as both 
the training and test data for the healthy hive classifi cation. 
Due to the fact that only one infested hive audio sample could 
be obtained, the training data was generated using 5 recordings 
of the same sample. In this section, we reveal the acoustical 
patterns associated with beehive colonies infected with the 
Varro-mite pest. We illustrate these patterns using classifi cation 
techniques widely used in the acoustical analysis domain:

Support vector machine (SVM)

Figure 5. A depiction of healthy region (blue) vs infected region (red) 
using SVM - first-component (RVF) / second-component (B)

Figure-5 illustrates the regions where healthy (blue region) 
or infected (red region) components (PCA output data) reside 
within. This method of separation is generated using automatic 
scripts implemented on the target system (beehive node) and 
requires little human intervention in the fi nal deployment.

Linear discriminant analysis (LDA)
Another similar approach which can be used to classify 

acoustic features is Linear Discriminant Analysis (LDA). This 
method is used to determine the highest separability function 
which can be generated from a given data set. The results 
in Figures 6,7 illustrate the use of separability functions in 
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order to make future predictions on unknown data sets, and to 
classify the data as either healthy or infected.

Figure 6. Varro-mite infected beehive acoustical response computed 
using LDA - healthy (blue) / infected (red) / test-data (green)

The blue and red features are used to differentiate 
between the healthy (blue) or infected (red) beehive acoustic 
characteristics. The green features represent a data set from 
an unknown beehive. By visual inspection, there is a clear 
indication that the data set (green) from Figure-6 resides mostly 
within the infected zone. Similarly in Figure 7, the green 
features statistically seem to indicate the beehive is healthy.

Figure 7. Healthy beehive acoustical response computed using LDA 
- healthy (blue) / infected (red) / test-data (green)

Discussion
Our beehive detection system demonstrated considerable 

accuracy with all four features used as discriminant functions. 
This however came at the cost of a higher computational time. 
With an improved quantity and quality of training data it 
would most likely be found that the discriminating capabilities 
of the system could be signifi cantly improved. Also, it has 
been shown that both LDA and SVMs are both capable of 
generating predictions accuracy percentages which are better 

than “chance” based percentages. Depending on the outcome 
of these future tests, it may be decided that PCA is only needed 
to be incorporated as far as the development stages, to help 
identify which features should be extracted and used in the 
fi nal design.

CONCLUSION
In this paper, we presented a system prototype for remote 

monitoring of beehives. This is rather a non-intrusive approach 
of dealing with pest infestation problem in the honeybee 
industry. The developed prototype is capable of capturing and 
analysing of acoustic samples collected from beehives. We 
showed how to extract features and train a classifi er that can 
predict the infestation status of a beehive. However, further 
research is still required to complete the system. Several ways 
in which this research can be improved include:
1. Acquisition of more bee samples: One of the most important 

aspects for the next phase of the projects development will 
be to attain a more comprehensive set of control data to 
train the system with.

2. Expanded feature set and classifi ers: There are a much 
greater range of features that could be used and tested 
for use in the honeybee system. It would therefore be a 
desirable process in the next stages of development that an 
expanded number of features be extracted from the audio 
samples, in order to create larger feature sets from which to 
compute the acoustic fi ngerprints.

3. Memory/Data management: Since the memory resources 
available to the system are limited, further methods of 
ensuring effi cient memory and data management, as 
well as minimising any redundant processes should be 
implemented.
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