Acoustics Australia #### SPECIAL ISSUE: ACTIVE NOISE CONTROL - . The 'cube of difficulty' in active noise control - Acoustics and practical applications - . Sensors and actuators - Active noise control and vibrating structures # The Dream Machine # SignalCalc ACE - QUATTRO # Everything that ACE-I has plus much moresSound Power. Demodulation, Acoustic Intensity, Rotordynamnes, Quality Control IRIG1B Time Code. Stepped Sine and with MIMO. Nultiple Input Multiple Output Single to Multi-Plane Balancing Shed: Response Spectrum, IEDS. - * 2 to 4 Input Channels - * 0 to 2 Output Channels - * 1 Tachometer channel standard - * 24 bit similtaneous - * Max Sample Rate 204.8 kHz - * DC to 40 kHz or 93 kHz. - * > 120 dB Dynamic Range - * Coupling AC, DC, Diff, SE, ICP - * Anti Alias 100dB protection - * Inputs Crosstalk < -100 dB #### All of the Old Stuff: Record on all 4 channels up to a rate of 204.8 kS/sec for data acquisition in aircraft, in vehicles, on ship, in the field and in industrial environments. Perform Advanced Modal Testing, incistive Histogram, Correlation, Real Time and synthetic 1/1 & 1/1.0 Cetzew, Auth Power Spectrum, Synchronous Average Sound Quality, Quality Control, Event capture, Human Vibration, Zoom and Waterfall Analysis, RPM and Order Track Analysis. QUACERO Rear Panel QUATTRO Front Panel QUATTRO Singlom is now distributing BSHA Tech microphomes & coccusives or Asstration & NZ. High quality, calibrated eleveral profusient microphomes to class! standard, Accessaries include ICP power sources, portable sound level calibrators, a USB powered 2 channel measurement soundern peripheral, a 12 speaker dischedured sound source, compact light weight 2 channel power amplifiers, on impedance tube providing 125 Hz to 3200 Hz range and a self-contained Tapping Medicine sound source for fost full measurements. For more information phone: 02 9975 3272 or visit: www.kingdom.com.au #### EDITORIAL COMMITTEE: Emery Schubert John Smith Mrs Leigh Wallbank Joe Wolfe RUSINESS MANAGER Acoustics Australia General Business (subscriptions, extra copies, back issues, advertising, etc.) Mrs Leigh Wallbank P.O. Box 579 P 0 Box 579 CRONULLA NSW 2230 Tel (02) 9528 4362 Fax (02) 9589 0547 wallbank@zipworld.com.au Acoustics Australia All Editorial Matters (articles, reports, news, new products, etc.) The editors, Acoustics Australia School of Physics University of New South Wales Sydney 2052 Australia 61-2-93854954 (tel) 61-2-93856060 (fax) aaeris@iphys.unsw.edu.au www.acoustics.asn.au AcousticsAustralia@acoustics.asn.au www.acoustics.asn.au #### Australian Acoustical Society Enquiries see page 104 Acoustics Australia is published by the Australian Acoustical Society (A.B.N. 26 000 712 555) Responsibility for the contents of articles and advertisements rests upon the contributors and northe Australian Acoustical Society, Articles are copyright, by the Australian Acoustical Society, All articles, but not Technical Notes or contributions to Acoustical Sorium, seem to referees for peer review before secret to referee so for peer review before secret peer secret and the admitted and fishers of the Acoustics Australia is Admitted and fishers of the Acoustics Australia is Admitted and fishers of the Acoustic Australia is Acoustic Australia is Acoustic Australia and Acoustic Australia and Acoustic Acoustic Acoustic Australia and Acoustic Printed by Cliff Lewis Cronulla Printing Co 91-93 Parraweena Rd, CARINGBAH NSW 2229 Tel (02) 9525 6588 Fax (02) 9524 8712 email: scott@clp.com.au ISSN 0814-6839 Vol 34 No 2 CONTENT CONTENTS August 2006 #### PAPERS | | , | |---|--| | | M. R. F. Kidner. Page 6: | | | Active Noise Control at UWA – A Brief Review of the Acoustical | | | Understanding and Practical Application of ANC Systems | | | Jie Pan and Roshun Paurobally | | | Sensors and Actuators for Active Noise Control Systems | | | Colin H Hansen | | | A Review of Active Control Applied to Plates and Cylinders | | | Nicole Kessissoglou | | | Future Meetings | | 1 | News | | | FASTS96 | | | Standards Australia | | | New Products97 | | | New Members | | | Book Reviews98 | | | Disease 103 | Active Noise Control: A Review in the Context of the 'Cube of Difficulty' ## More than just calibration... Brüel & Kjær provides that extra level of service #### Brüel & Kjær offers: - · Accredited Calibration and Repair Services - · Microphone, Accelerometer and Instrumentation Calibration - · Calibration available for Third Party Products - Easy to use booking system no lengthy delays Call Brüel & Kjær's Service Centre today on 02 9889 8888 www.bksv.com.au SERVICE AND CALIBRATION HEAD OFFICE, SERVICE AND CALIBRATION CENTRE Suite 2, 6-10 Talayera Road * PO Box 349 * North Ryde * NSW 2113 Telephone 02 9889 8888 * 02 9889 8866 e-mail: bk@spectris.com.au * www.bksv.com.au NC Australia CLIENT NOISE CONTROL AUSTRALIA PTY, LTD. ABN 11 078 615 639 Committed to Excellence in Design, Manufacture & Installation of Acoustic Enclosures, Acoustic Doors, Acoustic Louvres & Attenuators #### SUPPLIERS OF EQUIPMENT FOR: PROJECT Centrelink National Support Office ACT Hastie Australia P/L 70 TENNYSON ROAD MORTLAKE NSW 2137 Tel: 9743 2421 Fax: 9743 2959 A Sustaining Member of the Australian Acoustical Society From as little as \$\times \text{(0/m² it makes sense to use \text{/atix/acoustic wall to so orate to acoustic wall to but, masonry We Hebel construction MATRIX INDUSTRIES PTY LTD 144 OXLEY ISLAND ROAD, OXLEY ISLAND NSW 2430 PH: (02) 6553 2577 FAX: (02) 6553 2585 > Email: sales@matrixindustries.com.au Web: matrixindustries.com.au 62 - Vol. 34 August (2006) No. 2 Acoustics Australia #### From the President I cannot believe that two years have almost passed since I became President and this will be my sixth and final President message. Interpretive of how many good intentions you may have about what you hope to bring into a role or to achieve during your time in that role, other aspects of your life plus factors beyond your control always seem to hamper your best intents. you're best intents. I personally do not feet that I have achieved a great doal as there haven't been any significant changes in the past feet years. However, this is possibly just a reflection on what is a generally year with run organization where there does not appear to be significant feedbeck from our members about the need to change. Much of represented by two Councillons from each State is sport dealing with more administration-type issues and allocating relatively small, but not insignificant finds for accountic purposes. It is really at the State level where a great deal more action harpers. As a result of the member survey, the National Council is well aware that this primarily Council is well aware that this primarily relates to the quality of Acoustics Australia and also the number and quality of chemical seeminars held. Of course, the success of both these aspects is primarily the willingness or in these aspects is primarily the willingness to contribute both in offering and the primary that the sufficiency of members to contribute both in offering and the sufficiency that the property of the present p I would like to pass on my thanks particularly to Marion Burgess and Joe Wolfe for the seamless transition of Acoustisto and scale and a new editorial team. Joe has reminded me that the technical forum section is available for members to provide very short pieces, which do not usually undergo formal peer review. On another note, Joe also commented that for at least this and the previous special topic editions of the journal, interested customers may order copies of Acoustics Australia via the website. Until I read the draft of this special edition, I used to think active noise control was our clients actually doing something about noise control we recommended rather than just asking consultants to write reports about what the options are!!! Registration for the Conference "Noise of Progress" in now available online wow. conference co.nt/sconstiscifo and I believe wow. conference co.nt/sconstiscifo and I believe by the time this publication reaches you. The time this publication reaches you. The street was been fortunated enough to attend the last five AAS annual conferences and they seem to give the period of a joint conference in New Zealand to share ideas with our closest neighbours. If this is the concept of a joint conference in New Zealand to share ideas with our closest neighbours. If this conference is a success (which relies not conference is a success (which relies not conference is a necess (which relies not hold other joint conferences in the future. Just make sure your jassport isn't out of date. (A valuable piece of advice – I recently arrived in England and realised my British passport had expired 4 days earlier.) Neil Gross ## From the Guest Editor Editorial, special issue on active noise control Active noise control (ANC) has been suggested as a viable alternative for the control of low frequency noise for many years. When it was first suggested the electronic technology, control theory and signal processing knowledge needed to implement practical systems were all inadequate. Over the past 20 or so years the technology required to realise active noise control systems has progressed to a point where the implementation of a practical system is feasible and there are many current examples of such implementations. Nevertheless, the industrial use of the technology is still not widespread. It seems that there is still some way to go to transform the technology and developments from the laboratory to industrial environments where there are many things such as transducer failures, nower failures and transient noise events that can adversely affect the operation and performance of an ANC system. In this issue of Acoustics Australia, a snapshot is provided of some of the activities being undertaken in the active noise control area
in three Australian Universities. This work is certainly not representative of the entire range of activities being undertaken in active noise control in those three universities, let alone the whole of Australia. However, it is hoped that the papers will provide some insight regarding the issues associated with the practical implementation of active noise control systems. The first paper by Mike Kidner from the University of Adelaide uses a novel "cube of difficulty" to classify active noise control problems and he shows that those applications in the easy corner of the cube have found their way into industry. However, there are not many actual problems that fit into that classification. Research is still being conducted in the more difficult problems but there are many problems for which solutions exist but for which industrial implementations have not been realised due to complexity and unreliability. There is huge scope for work to be undertaken to simplify the implementation of active noise control systems for many applications, but unfortunately this work is not being done due to lack of available funds for this type of work: it is too applied to attract research funding and too risky to attract industry funding. The second paper by Jie Pan and Roshun Paurobally outlines some of the applications that have been implemented on an experimental basis by the University of Western Australia. Their work shows that continuous operation of systems in an industrial setting can be realised and that there is a bright future for commercial active noise control systems for some particular noise problems. The third paper by Colin Hansen discusses transducers that can be used in practical active noise control applications. Transducers are often the weak link in an industrial application as special precautions have to be taken to avoid contamination from liquids, dust and various chemicals. The transducers a bo need to be very robust and capable of continuous operation over many years. The fourth paper by Nicole Kessissoglou discusses the control of the vibration of and sound radiation from basic structures such as beams, plates and shells. Means of optimising the controller performance are discussed for each application and some insights into the physical control mechanisms are provided. I would like to thank the authors for their excellent contributions and 1 am hopeful that a future issue of Acoustics Australia will be able to include papers on other aspects of active noise control that were omitted here. Colin H Hasers # Solutions #### From measurement to analysis Thinking sound and vibration? Then think what we have to offer, ot only do you have access to technology that keeps you at the forefront of measurement & analysis from world leaders in Sound & Winston, you are also backed by our total satisfaction support from our dedicated & you have a support from our dedicated & free product application advice for the life of the instrument, you know you have a Sound Solution. Call; email or visit our web site today for more information! **Davidson** Measurement Leaders in Measurement and Calibration alibration Fax: Email: info@davidson.com.au Web: www.davidson.com.au Phone: 1300 SENSOR (736 767) Fax: 1300 736 755 Offices ground Australia and New Zealand ____ # ACTIVE NOISE CONTROL: A REVIEW IN THE CONTEXT OF THE 'CUBE OF DIFFICULTY'. M. R. F. Kidner Acoustics Vibration & Control Group Dept. Mechanical Engineering University of Adelaide Adelaide SA 5006 Australia Over the past twenty years active control of noise has developed into a mature research field and into a product for some technical companies. This paper reviews the current state of the art in both the recurrent and developenent fields using the context of a carbe of afficienty. The cubic illustrates how the three physical quantities: frequency bandwidth, spatial extent and signal coherence, contribute to the difficulty of achieving control performance. The internate is reviewed and placed within the cube to reveal partners in research and areas of further #### INTRODUCTION Active control of noise is no longer an exotoric research topic. It has been implemented many times in the real world [1] and has become one of the tools available to the noise control engineer. However, its limitations and subtlettes are still misunderstood by many. The simple explanation of creating an anti-nound field has left many people distillusioned when the difficulties of implementation. The development of a robust and simple active control system suitable for wide analotication has illuded many companies [2]. The successful implementation of active noise control is effected by three physical concepts; spatial extent, frequency handwidth and correlation or coherence of signals. Spatial Extent: This describes the complexity of the control problem in terms of spatial variables. This control problem in terms of spatial variables. This control problem in terms of spatial variables. This dimensionality of the control problem. Global control of the custory problem waves in a duxt, [3] could be considered to have a large spatial extent as it is possible to cancel all the sound downstread to the error sensor by reflecting all the sound energy back along the duxt. However the problem is only 1-D and so considered of fairly low spatial complexity compared to the case above the cut-on frequency of the duxt [4]. Frequency Bandwidth: Control of sound over a large bandwidth is more complex than control of a single for a number of reasons. The time interval over which control actions need to be calculated is smaller at high frequencies, the response of the plant is more complex and the spatial variation is higher. Due to the linear relationship between frequency and wavelength, bandwidth and spatial extent are intrinsically linead [5]. Coherence: To control a sound field the controller must have inputs that are coherent with the primary field. This correlation can be limited for several reasons, such as the sound field has low spatial correlation, as in a diffuse field at a single frequency[6]. Note, that in this case the field is correlated temporally, as only a single frequency is present. The input and error sensors may be incoherent due to the sound field being unrelated in time. This is the case for random disturbances when the delay between input and error signals is longer than the correlation delay. Some control problems are difficult because both types of incoherence are present, as is the case with urbulent boundary layer noise [7]. These three parameters are related in figure 1 by the cube of difficulty[8]. In the next section of the paper, each face and vertex of the cube of difficulty is discussed in turn with respect to the literature. Some approaches to current problems in active noise control are described in section three. Control algorithms are discussed in the penultimate section. #### 1.1 THE CUBE OF DIFFICULTY The cube of difficulty can be used to visualise the physical limitations of active control systems, but it is only a metaphor for the relationship between the parameters. The axis of the cube are spatial extent, frequency handwidth and incoherence. At one corner is control of a single frequency at one point in space at the other parc is global control of broadband spatially incoherent noise. These corners can also be referred to as the easy and very difficult types of control problem. Figure 1: The cube of difficulty for active noise control. Figure 2: Problems in active control Figure 3: Possible active control system hierarchy based on division of space The 'θ-c-d-e' face: Local Control: The front face (θ-cd-e) represents local control. The most successful commercial application of active noise control, (noise canceling headsets), lie on this face: Recent work by Jones [9] has shown that local zones of quiet can be created at a seat location, and that the neighbouring seat can also maintain its own zone of quiet or desired sound field. The 'a-b-difficult-f' face: Global Control: Global control: Global control is often sort after, and rarely sediced as it regions a significantly more complex control approach, especially at higher frequencies. The development of multi-channel control systems and associated high performance DSP chips has helped solve some of the control problems that lie close to this face. To appreciate the complexity of the problem it should be noted that multichannel control of random sound is not discussed until the final chapter of Nelson and Elliotts Active Control of Sound's 1990. Figure 4: Possible active control system based on division of frequency. The 'a-b-c-easy' face: Harmonic Control: Feedforward count of single frequency noise was the focus of the Leugs patent[10], which is considered to be the first active noise control system. Harmonic control is also of greatest application to industry as the majority of noise sources are rotatine machines. The 'Difficult-d-e-f' face: Broadband Control: These areas of active noise control have been investigated [11, 12] and have seen a huge increase in the number of successful applications due to the increase in computing power. Noise sources that fall into this category are jet/flow noise, tyre/road noise and impact noise. All of which are difficult targets for active control systems. Reductions of up to 6dB in automotive interiors have been achieved by Park et al. [13]. The spatial coherence of broadband fields has been investigated by Chun et al [14] and Rafaely[15]. The "9-a-f-e" face: Control of coherent signats. The "9-a-f-e" face: Control of coherent signats. The sound field is coherent and so a reference is easily found. The sound field is coherent and so a reference is easily found. The sound field is coherent and so a reference is easily found. The sound field is coherent and so a reference is easily found. The sound field is control, however digital hardware control band than feedback
control, however digital hardware sound field where a coherent reference signal such as a tackonemer outsuit is available falls borto this face. The 'b-c-d-Difficult' face: Control of incoherent signals: If the sound field is inoberent over spacefrime, feedback control can be used. The error signal is used as the input to the controller, if the delays in the controller are small enough, the control output will be coherent with, and hence able to control the sound field. Feedback control of a large area is complex because multiple channels may be required. It is better suited to local control problems such as control of sound in beadests. The use of multiple reference signals can help improve the control achieved. Often the sound field is due to many different sources; papers by Tu and Fuller discuss this issue [16, 17]. The problem of finding appropriate reference signals can cause still exists. The use of multiple reference signals can cause instabilities if they are correlated with each other. This might be the case if they are structural or acoustic measurements. The method proposed by Tu pre-processes the reference signals to form a set of orthogonal signals which are then input to the controller. The 'easy' corner: The lower left corner of the cube has been completed. Examples of local or 1-D control of a Theorem of frequency noise can now be found in industrial installations on an a consumer products: 1 should be mode that on the left of the cube, i.e. the single frequency face, the coherence axis single frequency is expensed to the coherence axis single frequency is considered as a consideration of the coherence, axis single frequency is temporary in a true diffuse field a harmonic signal will be incoherent over since. Changes in bandwidth: The line from the origin to apex (a), represents single frequency control problems of varying spatial extent. Research by Rafaely [18] has shown that by specifically targeting a zone of quiet significant reductions can be achieved within that zone, as the extent of the zone increases more control effort and secondary sources are required. Moving from the origin to point c is equivalent to increasingly the diffusity of the sound field. At point c the sound field only has a single frequency component and is the result of summation of many waves with random phases, as in an ideal diffuse field. The spatial correlation of diffuse fields is discussed by Rafacly [15] The control bandwidth widens as noise control problems are located further along the θ - θ - vertex. Increases in the control bandwidth have been obtained mostly by improved DSP performance. However some work on multi-rate filtering has also vielded significant results [19]. Changes in spatial extent: The move from local to global control requires an increase in both the number of secondary sources and error sensors. Some success, has been achieved by using virtual sensors [20]. However it is preferable to use good design, such as control of choke points [21] to achieve large sensor of rosice reduction. areas or none-reduceous. Changes in signal correlation: At point e the sound field is coherent and so with a suitable reference and adequate actuators and sensors global control can be achieved. At point d a coherent reference no longer exists and so feedback must be used. Travel along this vertex is equivalent to the progression from control of propeller tones[22] to jet noise in aircraft interiors[23]. The a - b vertex represents the progression from global control of a harmonic-lochemet signal to global control of a harmonic-lochemet signal to global control of a harmonic-lochemet signal. Point a, represents the global control of the sound field in an anechoic clambar, point b represents the global control of the sound field in a reverberation chamber. As most courted systems are on a limited volume, we find these problems offset along the b-c vertex. An example of control of the sound field in a reverberation effect in a control of the sound field in a reverberation effect in a control of the sound field in a reverberation effect in a simple of the control of the sound field in a reverberation effect in a first point of the sound field in a reverberation effect on the first point of the sound field in a reverberation effect of the endowed and maximum attenuation or extent of orders of quiet are not the same solution. This is inherent in active control problems. #### Point d to the difficult corner: Control of spatially and temporally incoherent noise The control of turbulent boundary layer noise was the focus of a great deal of work throughout the 1990s [7]. The turbulent boundary layer problem occupies space near the vertex (d-Difficult). The excitation is incoherent in time and space, and the required zone of quiet has to extend over many seats in the aircraft. This is a very difficult problem and it is accepted. that control performance will decrease with coherence. Global, broadband control requires a complex control system and the performance is limited by many factors. #### 2 CURRENT PROBLEMS #### 2.1 Divide and conquer An increasingly common approach is the subdivision of the controller into many smaller uncoupled units. Each unit controls a smaller, simpler problem, preferably one that is on the $(\theta-c-d-e)$ face, Gardonio has applied this to vibration control problems [25, 26] and Mathur et al [27] have applied it to noise control problems. #### 2.1.1 Spatial Separation Figure 3 shows how a control system could be split based on regions of control. The lowest level in the hierarchy is divided based on transducer coupling to the acoustic space. This has been investigated by researchers such as Rob Clark(28) who investigated the effect of transducer location on model observability and the use of spatially distributed sensors to reduce spillover between modes. The zone level is based on the size of the zone of quiet and this level is split based on the interaction between zones of quiet[9]. The region level is divided as a function of gross system attributes, such as dividing the control problem within an aircraft into regions for the rear, wing/engine and front sections of the cabin. The top level would be a scheduling and management layer. This layer could set weightings for individual regions or zones to maximise reduction in certain areas or make decisions based on hardware failure. #### 2.1.2 Frequency Separation Figure 4 shows a division of the control problem based on frequency. Paperlises et al. [29] demonstrated this applies for for structural problems. The frequency range is split based on the modal overlap. In each region of different control sets is applied. In the low modal overlap region optimal feedback controllers (Hg., Juwee used. In the mil frequency or the where the modal overlap is between 1 and 5 an PX-LND freedforward controller was used. In the high frequency may where only spatially limited control is possible a simple analog feedback loo was simplemented. The use of modal sensing or weighted transducer arrays is a form of selective sensing of frequency or spatial patterns [30][31] and has been applied to feedback control of structurally radiated sound. #### 2.2 Towards the upper right hand corner Active control of sound now has two foci, implementation of established algorithms in real world applications and the continued pursuit of solutions to problems from the upper right hand comes of the cube of difficulty. As explained above reaching this corner is challenging due to the nature of the physical world. The divide and conjugare approach may offer some solutions but these are likely to be highly theoretical and impractical. #### 3 IMPLEMENTATION #### 2.1 EV.I MS Food forward After its first proposal by Morgan[32] and independently by Widrow[33] the filtered-x LMS algorithm has been the mainstay for many active noise control systems. The reasons for this are: the algorithms ability to track changes on the same timescale as the delay in the error path, robustness to errors in the estimate of the error path, insmicitvo f immlementation. Reducing the computational load of feedforward algorithms has been the focus of much research, for example Bouchard et al. [34]. #### 3.2 Feedback Tseng et al. [35] have shown that by using optimal control techniques such as H_2 or H_∞ better control over the zones of quiet can be obtained. The H_2 approach will attempt to minimise the energy in the system and so is likely to be more robust than the minimisation of pressure at a number of discrete points. The energy density methods [36, 37] show similar results ## 3.3 Neural Networks, Fuzzy Logic & Non-linear controllers In an attempt to broaden the number of problems to which active control can be applied, linear controllers have been substituted by neural networks and fuzzy logic controllers. The neural networks have been used for system identification and the creation of the control outputs[381, [39]. #### 4 SPILLOVER The technologies developed for active control of sound have been applied to several problems that are not noise control problems at first glance. Virtual acoustics [40] [41] is one example. The virtual acoustics problem can be written in terms of the minimisation of an error function by combination of primary and secondary fields. Active noise control researchers are now anolytic their knowledge to this field [42][43][44]. #### 5 LIMITS OF THE CUBE ANALOGY The cube of difficulty is only one way of describing the way physical properties of systems effect active noise control. As such it cannot encompass the full range of phenomena that influence ANVC design. Non-linear and time varying plants are an example of factors that are not well described by the cube analogy. #### 6 CONCLUSION The upper right hand comer of the cube is unobtainable, however the division of the complex problems near this conter into many simple problems is yielding some
advance. It should be borne in mind that much of the cube has been successfully accled, (at least in the laboratory). However the full transition of active noise control technology to the matter place is still yet to happen. Development is the key to successfully crossing from laboratories to general use. Only close collaboration between research groups in industry and academia will achieve this. More important, is the identification of a killer application in which active noise control can failful its potential. #### REFERENCES - [1] C. H. Hansen, "Current and future industrial applications of active - noise control," in Active 04, Williamsburg, VA, Sept 2004. [2] C. H. Hansen, "Active noise control from laboratory to industrial implementation," in Noise Con 97, Penn State Univ., pp. 3–38, June 1997. J. Yuan and K. Y. Fune, "A travelline wave approach to active - noise control in ducts," Journal of Sound and Vibration, vol. 219, no. 2, pp. 307–321, 1999. [4] X. Li, D. Leelercq, X. Qiu, A. Zander, and C. Hansen, "Active control of higher order duct modes propagating in a large exhaust. - control of higher order duct modes propagating in a large exhaust stack," in Wespac, April 2003. 151 P.A. Nakon and S. I. Elliott. Active Control of Sound Academics. - [5] P. A. Nelson and S. J. Elliott, Active Control of Sound. Academic Press. 1993. - [6] B. Rafaely, "Zones of quiet in a broadband diffuse sound field," The Journal of the Acoustical Society of America, vol. 110, no. 1, pp. 296–302, 2001. - [7] G. P. Gibbs, K. W. Eure, and J. W. Loyd, "Active control of turbulent-boundarylayer-induced sound radiation from aircraft style panels," *The Journal of the Acoustical Society of America*, vol. 107, no. 5, pp. 2823–2824, 2000. - [8] C. R. Fuller and A. V. Flotow, "Active control of vibration," IEEE Control Systems Magazine, pp. 9–19, December 1995. - [9] M. Jones and S. J. Elliott, "The implementation of an active headrest for personal audio," in Twelfth International Congress on Sound and Vibration, Lisbon -Partugal, July 2005. - [10] P. Leug, "A process for silencing sound oscillations," 1936.[11] P. M. Joplin and P. A. Nelson, "Active control of low-frequency - random sound in enclosures," The Journal of the Acoustical Society of America, vol. 87, no. 6, pp. 2396–2404, 1990. [12] P. A. Nelson, J. K. Hammond, P. Joseph, and S. J. Elliott, "Active control of stationary random sound fields," The Journal of the - Acoustical Society of America, vol. 87, no. 3, pp. 963–975, 1990. [13] C. G. Park, C. R. Fuller, and M. R. F. Kidner, "Evaluation and demonstration of advanced active noise control in a passenger - vehicle," in Active 2002, Southampton UK, pp. 275–284, july 2002. [14] I. Chun, B. Rafaely, and P. Joseph, "Experimental investigation of spatial correlation in broadband reverberant sound fields," The Journal of the Acoustical Society of America, vol. 113, no. 4, pp. 4 - 1995–1998, 2003. [15] B. Rafaely, "Spatial-temporal correlation of a diffuse sound field," The Journal of the Acoustical Society of America, vol. - 107, no. 6, pp. 3254–3258, 2000. [16] Y. Tu and C. R. Fuller, "Multiple reference feedforward active noise control part is analysis and simulation of behavior." *Journal* - of Sound and Vibration, vol. 233, no. 5, pp. 745–759, 2000. [17] Y. Tu and C. R. Fuller, "Multiple reference feedforward active noise control part fit: reference preprocessing and experimental results," Journal of Sound and Vibration, vol. 233, no. 5, pp. 761–774, 2000. - [18] B. Rafaely, "Zones of quiet in a broadband diffuse sound field.," The Journal of the Acoustical Society of America, vol. 110(1), pp. 296–302, 2001. - [19] M. R. Bai, Y. Lin, and J. Lai, "Reduction of electronic delay in active noise control systems—a multirate approach," *The Journal* of the Acoustical Society of America, vol. 111, no. 2, pp. 916— - 924, 2002. [20] D. Petersen, A. Zander, B. Cazzolato, and C. Hansen, "Optimal virtual sensing for active noise control in a rigid walled acoustic duct," The Journal of the Acoustical Society of America, vol. - 118, no. 5, pp. 3086-2093, 2005. [21] C. R. Fuller, J. P. Maillard, M. Mercadal, and A. H. von Flotow, - "Control of aricraft interior noise using globally detuned vibration absorbers," Proceedings of First Joint CEAS/AIAA Aeroacoustics Conference, 1955. - [22] H. C. Lester and C. R. Fuller, "Active control of propellerinduced noise fields inside a flexible cylinder," American Institute of Aeronautics and Astronautics Journal, vol. 28, no. 8, np. 1374–1380, 1989. - [23] R. L. Clark and K. D. Frampton, "Aeroelastic structural acoustic coupling: implications on the control of turbulent boundary layer noise transmission," *Journal of the Acoustical Society of America*, vol. 102, no. 3, p. 1639, 1997. - [24] S. K. Lau and S. K. Tang, "Sound fields in a slightly damped rectangular enclosure under active control," *Journal of Sound and Vibration*, vol. 238, no. 4, pp. 637–660, 2000. - [25] P. Gardonio, E. Bianchi, and S. J. Elliott, "Smart panel with multiple decentralized units for the control of sound transsviceione part i: theoretical predictions," *Journal of Sound and Vivration*, vol. 274, no. 1-2, pp. 163–192, 2004. - [26] P. Gardonio, E. Bianchi, and S. J. Elliott, "Smart patel with multiple decentralized units for the control of sound transmission. part ii: design of the decentralized control units," *Journal of Sound and Histotion*, vol. 274, no. 1–2, pp. 193–213, 2004. [27] G. Mathur, C. R., Fuller, and J. Carneal. "Decentralized active - [27] G. Mattinit, C.R. Fullier, and J. Carneai, Decentralized active feedback control approach for vibration and noise reduction through an aicraft fusclage," *The Journal of the Acoustical Society of America*, vol. 118, no. 3, pp. 1950–1950, 2005. [28] R. L. Clark, C. Fuller, and A. Wicks, "Characterization of - distributed piecelec tric actuators for structural excitation," The Jurnal of the tenux tical Society of America, vol. 87, no. S1, pp. S17–S17, 1990. - [29] C. M. Papenfuss, M. R. F. Kidner, C. R. Fuller, and W. T. Baumann, "Experimental implementation of wide-band active vibration control," in *Active 04. Williammsburg, VA. Sept 2004*. - [30] S. A. Lane, J. D. Kemp, S. Griffin, and R. L. Clark, "Feasibility analysis for active acoustic control of a rocket fairing using spatially weighted transducer arrays," AIAA Journal of Spacecraft and Rockets, vol. 38, no. 1, 2001. - [31] K. M. R. F. B. M. J., and J. M. E, "Theoretical and experimental investigation of the spatial filtering properties of a nuber of concentric annular strain sensors," *J. Intell. Sys. Struc.*, vol. 14, no. 8, pp. 507–521, 2003. - [32] D. R. Morgan, "An analysis of multiple correction cancellation loops with a filter in the auxillary path," *IEEE Trans. Speculuma Signal Processing*, vol. ASSP-28, pp. 454–467, 1980. - [33] B. Widrow, D. Shur, and S. Shafffer, "On adaptive inverse control," in Proceedings of the 15th ASILOMAR Conference on circuits, systems and computers, pp. 185–195, 1981. - [34] M. Bouchard and S. Norcross, "Computational load reduction of fast convergance algorithms for multichannel active noise control," Signal Processing, vol. 83, pp. 121–134, 2003. [35] W. K. Tseng, B. Rafiely, and S. J. Elliott, "Local active sound. - control using 2-norm and -norm pressure minimization," Journal of Sound and Vibration, vol. 234, no. 3, pp. 427–439, 2000. - [36] B. Cazzolato and C. Hansen, "Active control of enclosed sound fields using three-axis energy density sensors: Rigid walled enclosures," *International Journal of Acoustics and Vibration*, vol. 8, no. 1, pp. 39–51, 2003. [37] B. S. Gazzolato, D. Petersen, C. O. Howard, and A. C. Zander. - "Active control of energy density in a one-dimensional waveguide: A cautionary note (1)," The Journal of the Acoustical Society of America, vol. 117, no. 6, pp. 3377—3380, 2005. [38] S. M. Hisch and J. O. Sun. "Control sional scheduline for active - 8] S. M. Hirsch and J. Q. Sun, "Control signal scheduling for active noise control systems: time domain study," Smart Materials and Structures., vol. 9, pp. 241–247, 2000. - [39] S. M. Hirsch and J. Q. Sun, "Control signal scheduling for active noise control systems," Smart hiterials and Structures, vol. 8, pp. 315–323, 1999. - [40] P. A. Nelson, "Active control of acoustic fields and the reproduction of sound," Journa of Sound and Vibration, vol. 177, no. 4, pp. 447–477, 1994. [41] M. Johnson, "Virtual acoustic photyping." The Journal of the - [41] M. Johnson, "Virtual acoustic Phiotyping," The Journal of the Acoustical Society of America, vol. 114, no. 4, pp. 2410–2410, 2003. [42] J. Rose, P. Nelson, B. Rafaelv, and T. Takeuchi, "Sweet spot - [42] J. Rose, P. Netson, B. Rataery, and L. Takeucin, "Sweet spot size of virtual acoustic imaging systems at asymmetric listener locations," *The Journal of the Acoustical Society of America*, vol. 112, no. 5, pp. 1992–2002, 2002. [43] H. Harnada, H. Tokunou, Y. Watanabe, O. Kiris eby, and P. A. - Nelson, "Design of a filter matrioused for stereo di pole transaural systems," The Journal of the Acuatical Society of America, vol. 100, no. 4, pp. 2695–2696, 1996. - [44] J. P. Carneal, J. Johnson, T. Johnson, and M. Johnson, "Real-time virtual room acoustic simulation," The Journal of the Acoustical Society of America, vol. 114, no. 4, pp. 2315–2315, 2003. ## **NOISE OF PROGRESS** #### 1st Australasian Acoustical Societies Conference Incorporating Acoustics 2006 20 to 22 November 2006 Christchurch New Zealand www.conference.co.nz/acoustics06 ## **ACOUSTICS ENGINEERS** #### NDYSound - Challenging new opportunities - Great career prospects with excellent advancement prospects in a firm which recognises the value - Acoustics Engineers can contribute to the organisation Attractive remuneration packages and working environment - Positions available in London, Sydney, Melbourne, Brisbane, Canberra, Perth and Auckland Norman Disney & Young is Australia's largest Building
Services Consultancy, with a major presence in New Zealand and the UK. Our strategic plan for ongoing expansion includes establishing a major presence in Acoustic Engineering, NDYSound is a group of experienced and collaborative Acoustic Engineers committed to sharing knowledge and ideas to enhance the service we offer to our clients as well as providing professional development within the company. NDYSound is seeking Acoustic Engineers at a variety of levels in our established practices in Sydney and Auckland, and is looking for staff to assist in establishing and growing NDYSound within Norman Disney & Young's offices in London, Melbourne, Brisbane, Canberra and Perth. The company has an enviable record of professionalism and innovation and has consistently been able to deliver a range of highly specialised services which have found strong acceptance by our clients. These abilities will result in NDYSound becoming a major presence as an Acoustics Consultant, and will provide significant opportunities for talented staff who are able to contribute to that success. #### We are currently seeking the following staff: - □ Managers: Acoustic consultants with proven abilities to market Acoustic Consulting Services, manage a team of acoustic engineers and provide competent advice to our clients. - Senior Acoustic Consultants: Acoustic Consultants who have established track records and a minimum of five years experience. Acoustic Consultants: Acoustic Consultants who have established track records and a minimum of three - vears experience. Successful applicants will need to demonstrate the following: #### **Educational Qualifications** A degree in Mechanical Engineering acceptable for CPEng status with the Institution of Engineers Australia. together with experience as an Acoustic Consultant and/or post graduate education in Acoustics. #### Alternative qualifications will be considered. Fields of Specialisation Positions are available for specialists in the following fields: - Architectural - ☐ Mechanical ☐ Environmental - □ Industrial Excellent remuneration packages apply subject to negotiation. Written applications can be submitted in the strictest of confidence, including a cover letter and resume detailing qualifications and experience to: Dennis O'Brien - Director Norman Disney & Young Level 1 / 60 Miller Street North Sydney NSW 2060 Tel (02) 9928 6822 Email: d.obrien@ndv.com www.ndv.com ## ACTIVE NOISE CONTROL AT UWA ## A Brief Review of the Acoustical Understanding and Practical Application of ANC Systems Jie Pan and Roshun Paurobally Center for Acoustics, Dynamics and Vibration School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia The design, analysis and realization of Active Noise Control (ANC) systems have been challenges to accustical and control communities over the last two decades. It is largely due to the effort in the accustical community and to obstances in digital singular processing bettendoughes that significant progress has been made in this field. As part of this international quest in advancing ANC technology, researchers at the University of Western Australia (UNA) have Focused on (1) applying an understanding of accounties appreture to the design of ANC systems and (2) the development of practical ANC systems for the Western Australian mining, shippediffing and building industries. This continues the state of #### INTRODUCTION Active noise control is a field of research and application concerned with attenuating unwanted noise using active devices and arrangements. The system that implements the active noise control usually consists of an acoustical system, a controller, sensors and actuators with associated interface electronics that provide interaction between the acoustical system and controller. The design, analysis and realization of ANC systems have been challenges to acoustical and control communities over the last two decades because of the complicated nature of acoustical systems (distributed parameters, effect of boundary, vibro-acoustical coupling, broadness of the frequency and dynamic ranges of the acoustical signal to be attenuated) and lack of general control theory feasible for various requirements in practical noise control. It is largely due to the effort in the acoustical community, where good understanding of the physical system. was brought into the design of ANC systems, and to advances in digital signal processing technologies that significant progress has been made in this field. In this brief paper, we use several practical examples, which have been studied at UMA, to illustrate two issues (utilization of the understanding of acoustics for effective ANC, and development of practical ANC systems) in the recent development of ANC. The importance of these two issues is also discussed by outlining some relevant key achievements in an international context. #### 1. UNDERSTANDING ACOUSTICS FOR EFFECTIVE ANC #### 1.1 Feedback ear defender (FED) The acoustic system within a FED (Figure 1) is the sound pressure P_s in the car-cup which is due to the transmission of external sound P_s and radiation from the vibrating diaphragm of the loudspeaker installed in the ear-cup. H is the frequency response function of the sound pressure in the cavity with respect to the sound pressure generated by the speaker disphragm and includes absorption and leakage. The total sound pressure is measured by an increphone (A) and actively attenuated by the loudspeaker (L) suitably excited by an electronic compensator (C) which takes the output of the microphone as its input. As a result of the feedback control, and uncentrolled sound pressure P_c, can be expressed as , $$\frac{P_c}{P_s} = \frac{1}{1 - H_c H_{\alpha} H_l H_a},$$ (1) where H_c , H_m and H_j are the frequency responses of the compensator, microphone, and loudspeaker respectively. Figure 1 (a) Schematic and (b) block diagram of a feedback noise control car defender. It becomes clear that an effective reduction of the ratio can be achieved by designing a large gain of the compensated open-loop frequency response function $H_s = H_s H_s H_s H_s$, and a small gain $(H_s) = 0.91$ at the phase cross over frequency terms the phase of H_s is equal to zero [1]. Although a compensator with biquadratic filter characteristics and an optimal despired probability that the parameters [2-3] is capable or increasing in selecting the filter parameters [2-3] is capable or increasing the gain near one frequency while reducing it at others, the uncompensated open-loop frequency response $(H_n = H_n H H)$ of the system can significantly affect the performance of the control system. For example, an H_n with broad and uniform magnitude and phase response allows a high noise reduction level within a broader frequency hand when optimal feedback is introduced. However noise reduction can only be achieved in a limited frequency range by optimal feedback if the Therefore it is necessary to select H_n , H_n and H_n so the magnitude and phase of H_n are suitable for the effective noise control. It can be shown [1] that $$H_o = H_M H_E H_A = \frac{E_w}{E_g} = \frac{H_M \left(\frac{Bl}{A_L}\right) Z_{at}}{Z_s \left[Z_L + Z_{at} + Z_{ab} + \left(\frac{Bl}{A_L}\right)^2 \frac{j\omega}{Z_s}\right]}$$ (2) where Z_{int} , Z_{int} , Z_{int} and Z_{int} are respectively acoustical impedances of the front and back cavities of the ear-cup, acoustical impedance due to air leakage and electrical impedance of the loudspeaker. # is a parameter associated with the magnetic field strength, coil length and effective diaphragm area of the loudspeaker. Equation (2) indicates that the characteristics of H are dependent on many system parameters. Figure 2 shows the change of the magnitude and phase curves of H for a typical active ear defender when the mass of the speaker diaphragm is used as a varying parameter [3]. Obviously, the open-loop response with smaller loudspeaker mass will give rise to a broader frequency range of noise reduction than that with a larger loudspeaker mass. It is therefore necessary to carefully design the uncompensated open-loop response of an active ear defender before designing an optimal controller for best performance. Figure 2 Magnitude and phase plot of the uncompensated open-loop frequency response function H_o when the mass of the speaker diaphragm is used as a varying parameter. #### 1.2 Feedback control of noise in an office Feedback control was used to attenuate the modal response of low frequency noise in an office due to random excitations [4]. In this application, the distance r between the control Figure 3 Uncontrolled (dotted) and controlled (solid) sound pressure level (a) at the error microphone location and (b) by spatial average when r = 13cm. loudspeaker and error microphone was a crucial parameter in producing a global noise reduction in the office. The control was implemented in a 4×2.9×3m3 office and the uncontrolled sound field in the office was generated by a white noise source. The controller design is based on the constrained ontimization of the compensator coefficients, the method similar to the compensator design for active ear defenders [1]. Figure 3 shows the experimental results (for a near field microphone placement at r = 13cm from the control source) of the uncontrolled (dotted curved) and controlled sound pressure levels respectively (a) at the error sensor location and (b) by spatial average of sound pressure throughout the room. For this experiment, a large amount of noise reduction is achieved at the error sensor location, but little reduction is achieved globally. On the other hand if the sensor is placed far from the control loudspeaker (r = 170cm), the frequency range for global noise reduction becomes narrower and an increase in sound pressure is observed outside of the range as depicted in Figure 4. This is because of
the increase in phase decay by the longer travel distance of the radiated sound, resulting in the phase crossover frequency being brought within the range. Finally when the error microphone is located adequately far away from the near field (r = 28cm), significant local and global noise reduction were achieved within an adequate broad frequency range (Figure 5). Figure 4 Uncontrolled (dotted) and controlled (solid) sound pressure level (a) at the error microphone location and (b) by spatial average when r = 170cm. The above experimental results indicate that there exists an optimal distance between the control loudspeaker and error microphone. If the actual distance is less than this optimal distance, a direct field dominates the control field, and only local attenuation at the error sensor location is possible. Further than the optimal distance, a large phase delay in the open-loop frequency response causes the phase crossover frequency to be too close to the frequency range of interest and therefore poor control performance is achieved. #### 1.3 Active control of sound transmission through double panel partitions The acoustical system for active control of sound transmission through a double panel partion includes the sound fields in the receiving room and air cavity between two panels, and vibration in the two panels (Figure 6). As the acoustical system has an increased number of sub-systems, the option for the placement of a finite number of actuators increases even for the same ain of the control minimization of the total acoustical potential energy in the room. Three arrangements of control actuator were considered [6, 6] and they are respectively (1) to directly attenuate the sound pressure field in the room using one point acoustic control source in the room; (2) to control the sound radiation into the room using a vibration control source on plate 2; and (3) to block the Figure 5 Uncontrolled (dotted) and controlled (solid) sound pressure level (a) at the error microphone location and (b) by spatial average when r = 28cm noise transmission path by inserting one point acoustic control source between the double walls. The condition for effective reduction of the sound energy in the room is that the primary and secondary pressure modal coefficient vectors in the room are proportional. For case (1), this condition is described as $$[P_{N_1}^{(p)}] \propto [G_{N_1}^{(c)}(r_2^{(c)})]$$ (3) where $[P_{\nu}^{(p)}]$ is the modal coefficient vector of the primary sound pressure in the room (with mode shape vector, it gives rise to the sound pressure in the room $p_2^{(p)} = [\Phi_{N_*}][P_{N_*}^{(p)}]$ and $[G_{N_*}^{(c)}(r_2^{(c)})]$ is the modal coefficient vector of the point source Green function in the room (which gives rise to the sound pressure in the room $p_2^{(s)} = [\Phi_N][G_{N_s}^{(c)}(r_2^{(c)})]V_{P_s}^{(c)}$. To satisfy Equation (3) requires similar excitation of all modes from the primary and control sources. Successful attenuation of low-frequency potential energy in a room by placing a point control source near the primary point source is an example where Equation (3) is approximately satisfied. In the control of sound transmission, the elements in $[G_{\nu}^{(c)}(r_{2}^{(c)})]$ depend on the control source location $(r_2^{(c)})$ while those in $[P_N^{(p)}]$ are determined by the coupling between the room and plate modes. Use of a single control source is difficult in simultaneously adjusting several modes. As a result Equation (3) can only be satisfied at those frequencies where the primary sound field is dominated by a single room mode and the modal overlap in the room is low. For this case, if the control source is located so as to excite the dominating mode only. Equation (3) will be approximately satisfied and large reduction of notential energy at this frequency is nossible. For case (2), the condition for sufficient global noise reduction in the room is $$[Z_A^{(2)}][V_{M_c}^{(p)}] \propto [Z_A^{(2)}][G_{M_c}^{(c)}(\sigma_2^{(c)})]$$ (4) where $[V_{i,i}^{(p)}]$ is the modal coefficient vector of the vibration velocity of panel 2 due to the incident sound and contributes to the primary sound pressure through the modal acoustic transfer impedance matrix $[Z_A^{(2)}]$ from panel 2 to the room $([P_{N_2}^{(\rho)}] = -[Z_A^{(2)}][V_{M_2}^{(\rho)}])$. $[G_M^{(\rho)}(\sigma_2^{(\rho)})]$ is the modal coefficient vector of the point force Green's function of panel 2. Together with the pressure generated by the control point force at $\sigma_2^{(e)}$ of the panel, they give rise to the modal coefficient vector of the secondary vibration in panel 2 $([V_{\mu}^{(c)}] = [G_{\mu}^{(c)}(\sigma_{2}^{(c)})]P_{\mu}^{(c)})$. The condition in Equation (4) can be satisfied by two physical mechanisms, in the Hrs. place, the control arrangement may let $[G_{M_1}^{(c)}, G_2^{(c)}] \propto [V_{M_1}^{(d)}]$ and the optimal control force is used to simply suppress the total modal amplitudes in plate 2. As a result, the source of sound radiation into the room is significantly reduced, and therefore the resultant total sound pressure. In the second place, the condition can be satisfied by adjusting the total velocity vector of panel $2([V_{M_1}] = [V_{M_2}^{(j)}] + [V_{M_2}^{(j)}])$ to be orthogonal with the row vectors in $[Z_4^{(j)}]$ (or with those row vectors corresponding to the dominating pressure components in the total sound pressure vector $[P_N,]$). For this case, the total plate velocity is not necessarily attenuated. The magnitude and phase of each mode in panel 2 are rearranged such that the superimposed contribution of all the elements in $[V_M]$ to the sound pressure components in the room is significantly reduced Figure 6 Typical acoustical system for active control of sound transmission into a room through a double panel partition. For case (3), the condition for sufficient global noise reduction in the room is $$[Z_{A}^{(2)} | Y_{P}^{(2)} | Z_{A}^{(1)} | Y_{P}^{(1)} | P_{M_{1}}^{(k)}] \propto [Z_{A}^{(2)} | Y_{P}^{(2)} | G_{N_{1}}^{(p)}(r_{1}^{(c)})]$$ (5) where $[Y_n^{(2)}]$ and $[Y_n^{(1)}]$ are the modal transfer mobility matrices respectively from the sound field in the cavity to the vibration velocity in panel 2 and from the external sound field to the velocity in panel 1, $[Z_{\ell}^{(1)}]$ is the modal transfer impedance matrix from panel 1 to the cavity, and $[G_N^{(p)}(r_i^{(c)})]$ is the modal coefficient vector of the point source Green function in the cavity. Equation (5) indicates three possible mechanisms involved in this control arrangement, one of which is suppression of the cavity modal response ($[Z_{\ell}^{(l)}]Y_{\ell}^{(l)}]P_{\ell\ell}^{(k)} \simeq [G_{N_{\ell}}^{(p)}(r_{\ell}^{(c)})]$). The other two mechanisms are (1) the direct rearrangement of the cavity sound pressure components to minimize the amplitude of the dominating radiating modes in panel 2: (2) the indirect rearrangement of the modal components in panel 2 by adjusting the cavity pressure components; such that the superimposed sound radiation into the room is reduced. These two modal rearrangement mechanisms may be accompanied by an increase of sound pressure in the cavity and vibration in panel 2. #### 1.4 Discussion One of the important roles acousticians have been playing in the development of active noise control systems is to use the acoustical features of the systems to improve the control performance. Many examples in relation to this can be found in the books by Nelson and Elliott [7], and Hansen and Snyder [8], A large number of papers on how the physical understanding is used to improve the effectiveness of ANC systems can also be found in the several Proceedings of Active Noise and Vibration Conference since 1991. In particular, the reader is referred to the work by Fuller [9] and Clark [10] on how the physical understanding of sound and structural interaction can assist the design of ANC systems for attenuating structural sound radiation; by Elliott [11] on how the understanding of the open loop features of local control systems is related to the effective decentralized control of the dynamic response in distributed systems, and by Nelson [12] on how the basic physics of the sound field actually dictate the design of virtual acoustic imaging systems. #### 2. DEVELOPMENT OF PRACTICAL ANC SYSTEMS Apart from contributing to the understanding of acoustical systems in order to improve the design and performance of ANC systems, research at UWA also focused on the development of practical ANC systems. This section briefly presents the results obtained from real applications such as ventilation ducts, heavy mining vehicles and high-speed boats. When a reference signal that is highly coherent with the error signal is available or can be derived, feedforward control can be employed. The examples presented below make use of a multi-channel adaptive feedforward controller with online system identification based on a novel algorithm developed at UWA [13] to reduce tonal noise. #### 2.1 Active control of fan noise The noise associated with axial flow fans used in ventilation is typically characterised by tonal frequency components superimposed on broadband random noise. The tonal components are associated with the blade passing frequency (BPF) of the fan and its harmonics depending on the fan rotational speed. The random noise is usually associated with flow noise and turbulence. In most cases, the tonal peaks are significantly higher than the random noise. Apart from being the main contributes to the overall noise level, they are a source of annoyance. Hence, it is important to have adequate noise attenuation of fines executedly inside buildings. On the ground floor of the civil and mechanical engineering building at the University of Western Australia is a small computer room that houses the mainframe computer network which consists of several racks of network hubs and computers [14]. These equipments
are left on permanently and an exhaust fan is mounted inside the room to discharge the hot air into the corridor. The discharge fan is a backswent. 5-bladed. 6note 300mm diameter axial flow fan delivering an air flow of 0.35m3/s. Power spectral measurements of the fan noise show that it contains low level broadband noise and high level discrete tonal noise as depicted in Figure 8. The uncontrolled spectrum clearly depicts the tonal components associated with the blade passing frequency of 82 Hz and its first three harmonics around 164 Hz, 246 Hz and 328 Hz for a 5-blade fan rotating at 16.4 revolutions per second. Since the tonal peaks are at least between 15 to 30 dB above the background noise level they are clearly audible and also contribute significantly to the overall noise level of the fan. The noise control solution consisted of a combination of passive and active noise control to attenuate both the broadband and discrete components of the fan noise respectively. For the passive noise control of the higher frequency broadband noise (f > 800Hz), a short square duct of dimensions 0.45m x 0.45m x 0.9m was constructed of 2mm thick galvanised panel and placed over the outlet side of the fan (Figure 7 (a)). The inside walls of the duct are lined with 1.5cm thick wool blanket to provide sound attenuation. The duct provided a sound attenuation of approximately 10dB for broadband frequencies above 1kHz while the level of the BPF and harmonics remained unchanged. However, the A-weighted overall sound pressure level measurements taken at these positions indicated a decrease of about 2dB(A) only. The small reduction can be attributed to the fact that the overall sound pressure level is predominantly determined by the high-level discrete frequency noise of the BPF and harmonics, which are hardly reduced even after the installation of the duct. Hence active control was applied to reduce these tonal components. A schematic of the control system used for the fan noise is shown in Figure 7(b). In the fan ANC system the error sensor is a ministure electret microphone, the reference sensor is a nojical switch technometer and the control actuator is a 150 mm diameter closed-box moving-coil loudspeaker system. The controller is a digital adaptive controller implemented on a Digital Signal Processor (DSP) hardware platform. It incorporates an online system indirification scheme using the additive random noise technique to model the system. This allows any changes in the secondary plat transfer function due to aging of components, changes in flow characteristics and temperature to be tracked in real time, thus optimising noise Figure 7. (a) Photograph and (b) schematic of fan ANC setup in a duct. reduction at all times. The measured typn of the fin blades is also correlated to the blade signals correlated to the blade passing frequency and its harmonics. The chardwards of the blade passing frequency and its harmonics. The chardwardsged vising an infra-red optical which as a reflectal which as a reflect and with a microphone reference sensor. Moreover, long that the possibility of acoustic feedback between the reference and error sensor is eliminated 114 as passing the possibility of acoustic feedback between the reference and error sensor is eliminated 114 as The control software is programmed into an EPROM that runs the entire ANC system. If an error occurs at any time an automatic hardware reset is initiated and the ANC system restarted. The electronics used for the fan noise include sensors interface, DSP and power amplifier to drive the control loudspeaker. These are housed inside a standard polycarbonate wall-mounted by The noise spectra measured at the error microphone before and after control act shown in Figure 8. The controlled spectrum shows that the discrete frequencies have been reduced to background moise level. Reductions of more than 30d lat 82 Hz, 25 dB at 164 Hz, 15 dB at 246 Hz and 15 dB at 328 Hz have been achieved. Such results would be practically very difficult, bully and expensive to obtain by using passive noise control methods alone. Another benefit of ANC apart from its effectiveness to control low frequency noise is its compactness and minor modification required to the existing fins setup. Figure 8 Noise spectrum at error microphone before and after control The combined passive/active system produced an overall noise attenuation of about 4 to 5df(A). Since its implementation in June 2001 the control system has been operating continuously without any problem while maintaining optimal noise reduction. The DSP controller is designed with an automatic restart including secondary path identification and control in case of temporary power failure. Sufficient safety factor has been used in the selection of the dynamic ranges of the control loudspeaker and electronic devices to handle any unexpected high level transient signals in the control loop. Whilst providing a solution to the noise problem inside the building, this system also serves as a teaching tool for students and a demonstration of active noise control to industry. #### 2.2 Active control of noise in a high-speed boat High-speed boats are often made of lightweight aluminium and as a result low frequency noise and vibration can be transmitted to occupants. Active noise control has been applied to reduce the low frequency noise noise in a 18 m long a boat fitted with two discle engines. Atthough the ANC system used in this case was similar to that for the fan noise it however consisted of 2 accelerometers as reference sensors located on the aft wail of the wheelmone, 4 error microphone spositioned the after wail of the wheelmone, 4 error microphone spositioned from the properties of Figure 9 shows the A-weighted noise spectrum when the two nearly synchronized engines are running at 2135 rpm during cruising condition. The total components around 48, 71, 94 and 141 Hz are due to the generator, impellers blade passing frequencies and their harmonies. In such an application considerable effort was required to ensure that the coherence beb²⁰70 the reference signals and the error signals was high over the frequency range of interest. This was done by carefully selecting the locations of the reference accelerometers such that they give a good representation of the cause of the noise inside the wheelhouse. Figure 9 also shows the noise spectrum after ANC and indicates that good noise reduction can be obtained for the tonal components. Reductions of 6 dB at 48 Hz, 11 dB at 71 Hz, 7 dB at 94 Hz and 12 dB at 141 Hz have been measured. As a result the overall noise reduction that could be achieved was between 2 to 3 dB(A). This type of result would have been difficult and costly to achieve by using passive means alone without a considerable increase in weight. The current ANC system can be extended to deal with higher frequency components (above 200 Hz), but to maintain an adequate size of the "quiet comes," in will be necessary to increase the number of error microphones and control loudspeakers. Moreover, the DSP emlowed will also have to be more powerful. Figure 9 A-weighted noise spectrum at skipper seat before and after ANC. #### 2.3 Active control of noise in a truck cabin Low frequency noise is recognised as a main cause of annoyance and fatigue among drivers of heavy mining vehicles [16]. Active noise control can be used to reduce the low frequency total noise inside such wheiles and micraes occupant comflort while reducing the overall noise level when passive control is ineffective. A multi-channel system comprising of 2 error sensors, 2 control loudspackers and 3 reference sensors as shown in Figure 10 was used to achieve local control around the driver head in a 105 tons mining truck. The three reference sensors are noziosstry to ensure a high coherence between the reference signals and error microphones under normal operating conditions. When the truck is stationary or cruising at constant speed the noise spectrum is dominated by tonal components associated with the engine and onboard auxiliary equipment as depicted in Figure 11. The ANC result obtained for a stationary vehicle is shown in Figure 11(a). Reductions of 24 dB at 33 Hz. 15 dB at 96 Hz, 25 dB at 191 Hz and 12 dB at 228 Hz have been measured. For this case the corresponding reduction in overall noise level is about 4 dB(A) which is clearly significant. When the truck is cruising at around 50 km/h the result shown in Figure 11(b) is obtained. Again tonal components are present and ANC is effective at reducing these. Reductions of 13 dB at 28 Hz, 18 dB at 58 Hz, 10 dB at 101 Hz and 15 dB at 168 Hz have been measured. These significant tonal noise attenuations combined with some gassive treatment under the cabin floor [15] resulted to an overall noise reduction of between 3 to 4 dB(A). The results also show that when the truck is moving tonal components at higher frequencies are present and contribute more to the overall dB(A) level than the low frequency tonal components. It is possible to improve the frequency range of noise reduction around the driver head with additional error and control channels and more processing power. Both ANC systems described in subsections 2.2 and 2.3 have been prototyped and tested through field trials with acceptable noise reduction. The UWA team and its industry collaborators are seeking opportunities for the commercial realization of the prototypes. Figure 10 Schematic of feedforward control strategy inside truck cabin Figure 11 A-weighted level when (a) stationary, (b) cruising using 3 reference signals #### 2.4 Discussion The world has witnessed nearly two decades of effort in laboratory research and industrial application of ANC technology. We are now faced with frequent questions like "when and where can we see ANC products as practical installation?" Indeed successful examples of such installation may play the role of flagship in encouraging the
arrival of the "fourth wave" of wide utilization of ANC in industry. Examples of such applications are limited mainly to the control of sound propagation in air handling ducts, gas turbine exhausts or diese engine exhausts, the control of sound pressure in a small cavity inside of active ear muffs, and the reduction of tonal noise in propeller driven aircraft using active engine mounts and vibration actuators mounted on the fuselage rings [17]. Some mass produced products for reducing booming noise by Nissan and low frequency road noise by Honda were also reported [18]. It is expected that such practical application of ANC will continue and bring an increasing number of real life and successful installations to satisfy the ever increasing demand of modern noise control. #### 3. CONCLUSIONS In this paper a brief review of the contribution of research at UWA in the field of active noise control has been presented. In particular, there has been a focus on understanding the fundamental properties of acoustical systems in order to improve the ANC design and on the development of practical ANC systems to reduce low frequency noise problems in industry. In the first instance three examples show the importance of a thorough understanding of acoustical systems in determining the performance and limitations of ANC methods. In the second instance practical ANC has been demonstrated by three real application examples. The results show that ANC is effective in reducing low frequency noise where rassive control becomes impractical. The success of these systems relies on a good understanding of the acoustics, proper design of hardware and software as well as a good knowledge of control methods. #### ACKNOWLEDGEMENTS Over the last decade, many active noise and noise control (ANVC) projects at UNA were generously sponnored by following organizations: MERUMA, ARC, Strategic Matine, ALCOA, Seasstae, UNA Ventilation Committee and DSTO, ALCOA, Seasstae, UNA Ventilation Committee and DSTO, which was a strategic projects of the #### REFERENCES J. Pan, M.P. Norton, R. Paurobally, H. Peng and C. Bao, "Development of Adaptive Based active Noise Control Ear Defenders for the Resource Industries", MERIWA project No. M210, (Report No. 167) published by the Minerals and Energy Research Institute of Western Australia (1996). - R. Paurobally and J. Pan, "Feedback control of ear defender". Proceedings of the 1995 AAS Annual Conference, Perth, 9-13 (1995). - R. M. Paurobally, "Active noise control in enclosures", PhD Thesis, Department of Mechanical and Materials Engineering, UWA, October 1997. - C. Bao, R. Paurobally and J. Pan, "Feedback control of noise in a room", The 5th International Congress on Sound and Vibration, Dec. Adelaide 287-294, (1997). - J. Pan and C.Bao, "Analytical study of different approaches for active control of sound transmission through double walls", J. Acoust. Soc. Am. 103. 1916-1922. (1998). C. Bao and J. Pan, "Experimental study of different approaches - for active control of sound transmission through double walls". J. Acoust. Soc. Am. 102, 1664 1670 (1997). P.A. Nelson and S. J. Elliott. Active Control of Sound". Adademic - Press, London, (1993). 8. C. H. Hanson and S. D. Snyder, "Active control of noise and - vibration", E & FN Spon, (1997). 9. C.R. Fuller, Active control of sound radiation from structures: progress and future directions". Proceedings of Active 2002. - ISVR, Southampton, UK, July 3-27, (2002) R. L. Clark, Active Control of Fluid-Structure Interaction, Proceedings of Active 2004, Williamsburg, Virginia, USA, September 20-22, pp. 44-60. - Stephen J. Elliott, Distributed Control of Sound and Vibration, Proceedings of Active 2004, Williamsburg, Virginia, USA, September 20-22, pp. 19-25. - P A Nelson, Active control for virtual acoustics, Proceedings of Active 2002, ISVR, Southampton, UK, July 67-89, (2002) - J. Pan, R. Paurobally, C. Bao and R. Greenhalgh, "Noise Reduction Apparatus", International Patent, WO 00/38173 (2000). - Y-J. Wong, R. Paurobally and J. Pan, "Hybrid active and passive control of fan noise," Applied Acoustics, Vol. 64, Issue. 9, 2003. R. Paurobally and J. Pan, "Practical active noise control - results - R. Paurooany and J. Pan, "Practical active hoise control results and difficulties," 12th International Conference on Sound and Vibration, Lisbon, Portugal, 2005. D. A. Stanef, C. H. Hansen and R. C. Morgans, "Active control - analysis of mining vehicle cabin noise using finite element modelling? J. of Sound and Vib., 277, 277-297, (2004). 17. C.H. Hansen, "Current and future industrial applications of active noise control, Proceedings of Active 2004, Williamsburg, Virninia, USA, Sestember 20-22, no. 1-18, (2004) - H. Sana, T. Yamashita and M. Nakamura, "Recent application of active noise and vibration control to automobiles", Proceedings of Active 2002, ISVR, Southampton, UK, July 15-17, (2002) #### ENVIRONMENTAL NOISE LOGGER MODEL RTA02 Hire and Sales Check The Price ! Type 2 Expanded memory - 4,400 sets of interval data (Leq,L0,L1,L5,L10, L50,L90, L95, L100) Ranges 30-100dB(A) and 65-135dB(A) Fast & Stov time weighting Collapsable microphone pole stacks inside case Display enables setup and calibration to be checked on site without computer set of measurements to be read without computer Operates for up to 2 weeks using the supplied battery Weatherproof unit - complete new design Real time clock Serial mal time data streamina Display enables single # NATA ACCREDITED LABORATORY Sound level meters Loggers Filter Sets Calibrators NATA Accidented Laboratory Visit our website for samples #### ENM ENVIRONMENTAL environmental consultants industrial companies and any other groups involved with prediction of noise in the environment. RTA TECHNOLOGY PTY LTD # Acoustic Hardware and Software De Alen se occ 220 140 Email : rtalech@rtagroup.com.au www. Sydney (Head Office) Mclboun vel 9, 418A Elizabeth St rry Hills NSW 2010 : (02) 9281 2222 Melbourne 1/66 Curzon St, North Melbourne VIC 30 Ph: (03) 9329 5414 Fay: (03) 9329 5627 78 - Vol. 34 August (2006) No. 2 # SENSORS AND ACTUATORS FOR ACTIVE NOISE CONTROL SYSTEMS Colin H Hansen Acoustics, Vibration and Control Group School of Mechanical Engineering University of Adelaide SA 5005 Successful implementation of a active noise and vibration control system requires an effective control system and a good understanding for the physics of the operation o #### INTRODUCTION There are numerous practical applications where active noise control has the potential to provide significant benefits. Algorithms [1-11] are available for many types of noise problem, ranging from multi-tonal to broadband and a considerable amount of work has been done by various researchers on extending the controllable bandwidth from 1.5 octaves to three or more [12]. However, in many of these cases, the implementation of a successful active noise control system is hindered by the lack of availability of robust, generic and low cost hardware. This hardware includes sensors and actuators as well as the control system itself. Requirements for a user friendly control system have been discussed elsewhere [13] so here the discussion will be restricted to control approaches and associated sensors and actuators. The discussion will also include vibration actuators and sensors as these are sometimes used to control sound radiation. There are two main categories of active noise control: fully active and semi-active. Although both fully active and semi-active systems may use the same kind of sensors, they invariably differ in the kinds of actuator or control source and the they use. Also the sensors and actuators that are most suitable for a particular application depend on the control stay that is chosen. For example if the noise to be controlled is generated by a vibraining surface, it may be better to use vibration actuators to control the vibration of the surface rather than use loudspeakers adjacent to the surface. A fully active system uses actuators to directly genente a cancelling or suppressing noise or viberation signal. An example of a feedforward fully active system to control noise propagating down a duct would consist of a microphone (referred to as a reference sensor) in the duct to measure the noise that is to be controlled, a loodspeaker (referred to as the control source), mounted in the wall of a duct downstream of the microphone, is introduce the cancelling noise and as second microphone (referred to as the error sensor), mounted in the wall of the duct, to measure the residual noise sufficiently far downstream from the loudspeaker, with the control system using the signals from the two microphones to generate the required signal to minimise the noise at the second (error) microphone. The required distance between the control send under or sensor is controlled by the delays in the loudspasker response and the control system itself as well as possible near field effects in the vicinity of the floudspasker. At room temperature, most systems will cope well with a distance the representation of the proper that the control system is caused to be the theory of the control system would not require the reference microphone, and in this case the error microphone, and in this case the error microphone, and in this case the error microphone. Feethask charge the control source to minimize instability proteins are discussed in more detail elsewhere [14]. A semi-active system uses actuators to modify the dynamics of a system or to tune a passive noise-suppressing device so that the system produces less noise. Using our duct example, a Hellmholtz resonator may be a good choice for suppressing contain noise. However, if the frequency of the tonal noise varies (for example, it may be associated with a variable speed engine and the duct may be an exhaust pipe), the Hellmholtz resonator would need to be adjusted to keep in synchronisation with the varying engine speed. The control
system to automatically keep the Hellmholtz resonator optimised as the engine speed changes is referred to as a semi-active system. Its input would be a signal that is proportional to the acoustic power propagating down the duct and its output would five a motor that adjusted either the resonator volume or neck length to minimise the input signal. #### 1. ACTUATORS FOR FULLY ACTIVE SYSTEMS Although many people have tried, it is difficult to beat loudopeakers as an acoustic control source in active noise control systems. Current development is aimed at maximising the file and maximising the physical protection of these desire in dirty industrial environments. In the past, loudspeakers have been manufactured with stainless steed and plastic displaying but these have been very expensive options and not as efficient as paper come speakers. The ANVC group at The University of Adelaide has spent a considerable effort experimenting with a number of methods to prevent the build up of contaminants on the speaker cone in instances where they are mounted on industrial exhaust stacks ranging from a cement plant [15] to a prowdered milk processing plant. The final design, which is effective for stack temperatures of up to 90°C; is illustrated below. Figure 1. Schematic of the speaker unit The speaker coil must be cooled either by compressed air or by wrapping a copper pipe around the coil and passing cooling water through it. It is also important that if compressed air is used, the air pressure is kept low to avoid damage to the loudspeaker. Note that there is a pressure equalisation passage between the rear and front of the speaker cone. This is essential as it prevents temperature differentials between the two sides of the cone from jamming the cone against one of its "stops". If the temperature in the exhaust stack is higher than 90°C, it may be necessary to direct some of the air flow over the front face of the loudspeaker by drilling holes in appropriate places in the spacer and outer casing. The above speaker enclosure design was arrived at after trying numerous protective coatings (including epoxy paint as well as automotive gasket spray covered with silver paint spray) on the speaker cone itself. Although the protective coatings withstood the normal operational environment in the milk powder processing exhaust stack, they were unable to withstand the daily aggressive steam cleaning with a highly alkaline product. To overcome this problem, a protective membrane as shown in the figure was used. First a 1.5 mm thick, rubber-like material known as "vyon" and used extensively in the dairy industry, was tried. This reduced the loudspeaker output by 20dB at the 180 Hz frequency at which control was needed and this meant that the maximum available amplitude of the controlling sound in the duct was too small. Although the transmission loss of the vyon was small, its high damping properties loaded the loudspeaker and suppressed its capacity to generate noise. Second a 0.1 mm thick printed circuit board material was tried and this resulted in a 10 dB reduction of speaker output capability, which was still too much. Finally a 0.1 mm thick sheet of mylar was used with a resulting 3 dB reduction in the speaker output, which was acceptable. A picture of the mylar installed in a spray dryer exhaust stack is shown below. from inside the exhaust stack). Note the spout at the bottom to drain any residual liquid after cleaning. Another type of actuator that is commonly used to control the vibration of structures that are radiating sound is the piezo electric crystal. When excited by an electrical signal, they expand and contract proportionally to the voltage across the two largest faces, thus caussing a cyclic strain on the structure to which they are attached. These crystals commonly range in thickness from 0.25 mm to 6 mm and are bonded to the accuracy whose vibratiens is to be controlled. The maximum terror of the control co Perhaps the most useful and versatile actuator for controlling structurally radiated sound is the inertial actuator. This type of actuator essentially consists of a coil surrounding a permanent magnet. When the coil is energised with an alternating current, the permanent magnet moves back and forth. The permanent magnet is held in place in a structure, the stiffness of which determines the resonance frequency of the shaker. The difference between an inertial actuator and an electrodynamic shaker is that in the former case, the heavy permanent magnet moves while the coils remains stationary, while in the latter case the opposite is true. In practice, this means that an inertial shaker can be directly attached to the structure it needs to excite and in contrast to the electrodynamic shaker, it needs no other support. If tonal noise is to be controlled, maximum shaker output is obtained if the excitation frequency is close to the resonance frequency of the inertial shaker, which is controlled by the mass of the permanent magnet and the stiffness of its suspension.. Thus it is sometimes desirable to be able to easily adjust the resonance frequency of the shaker by adjusting the suspension stiffness. The ANVC group at the University of Adelaide is currently working on a device that does just that and is able to be controlled by an adaptive filter in such a way that the suspension stiffness is automatically and continuously adjustable. In practice, the shaker resonance frequency must be slightly different to the frequency of sound radiation being controlled or the active noise control system may suffer from stability problems. An inertial actuator controlling sound radiation from an irregular enclosure shell is illustrated in Figure 3. Figure 3. Inertial actuator mounted on an irregular enclosure. #### 2. HARMONIC DISTORTION Harmonic distortion is the process whereby a transducer generates mechanical excitation at frequencies that are multiples of the electrical excitation signal frequency. In active noise control systems, this can result in a tonal noise sounding worse after the application of active control, because even though the fundamental tone may be considerably reduced in amplitude, the amplitude of higher order harmonics has been increased and the ability of the ear to hear the higher harmonics better, compounds the problem (as most problems attacked using active noise control are low frequency in nature). One way to minimise harmonic distortion is to drive the transducer at power levels that are less than 10% of the rated maximum and this applies to loudspeakers as well as piezo-electric crystal actuators. Keeping the input power below 10% of the rated maximum has the added advantage of extending transducer life so that in the case of loudspeakers, five years of continuous operation would not be unusual. #### 3. DISTRIBUTED ACTUATORS Recent work [16] has reported on investigations using large unabers of actuators on structures to control sound transmission through structures. There is currently speculation supported by aneodual evidence that if a sufficiently large number of control sources are used in a feedforward active noise control system, it is not too important where they are placed in terms of achieving a global reduction in some cost function. That is, it is not necessary to go through an optimisation process to optimilarly place the control sources and error sensors. In an attempt to further simplify the control process, Fuller and Carmeal [17] suggested using hierarchical blo control in which a small number of signals are sent from an advanced, centralized controller and are then distributed by local simple rules to multiple control actuators. Some recent results comparing the effectiveness of multiple single channel control systems versus a single multi-channel control system attached to the same sensors and actuators are shown in Figure 4 [18]. Actuators to achieve this result consisted of tiny (10 mm diameter and 20 mm long), lowcost inertial actuators, which provide a spring stiffness using magnetic repulsion forces. In the figure are shown results for vibration control of a cantilevered beam using a foam damner. inertial actuators (unactivated) in the foam, activated inertial actuators driven by single channel controllers and activated inertial actuators driven by a multi-channel controller. It can be seen that for this simple example involving broadband control, the multi-channel controller achieves much better results than multiple single-channel controllers, supporting the view that it may be worth investing in the development of fast multi-channel controllers canable of handling many channels simultaneously using a multi-channel algorithm. 0 100 150 200 250 300 350 400 450 500 Frequency (Hz) Figure 4. Acceleration response of a bare cantilever beam, a beam with a thick layer of foam containing five embedded, non-driven inertial actuators, with the actuators driven using five single channel controllers and then driven with a 5-out.6in fully coupled (MIMO) controller. #### 4. SEMI-ACTIVE ACTUATORS Given the difficulty in implementing fully active noise control systems in industrial environments, there has been consideral nevironments, there has been consideral interest in the development of semi-active systems that can optimise the characteristics of a passive noise control systems that can controlled the controlling single or multi-tone noise, where the wavelength associated in wavelength associated wavelength associated over wavelength charge could be caused by an excitation frequency is likely to vary with time. The wavelength and could be caused by an excitation frequency in the controlling and controlli When a Helmholtz resonator is used to control a frequency varying tonal noise propagating along a duct, the resonance frequency of the resonator can be varied by varying the resonator volume, neck length or neck diameter. In practice, it is easiest to vary the resonator volume and
many ideas have been patented for doing this [19-22]. Although a number of schemes have been patented for varying the neck length [23] or cross sectional area [24, 25] or both [26], these are generally more difficult to implement in practice. The volume variations can be achieved by controlling a d.c. motor or stepper motor which drives a lead screw attached to a plunger or similar device. Neck length variations can be achieved by using a sleeve inside the neck and a motor to extend the sleeve into the resonator volume or into the existing neck [23]. As the sleeve extends into the resonator volume, the effective neck length becomes longer and the resonator volume reduces slightly. Note that for best results, the Helmholtz resonator needs to be mounted at a location in the duct where there is a sound pressure maximum. This implies that the range of speed variation or frequency variation in the tone to be controlled should not be more than about 20% on either side of the centre frequency. If a semi-active Helmholtzesonator is to be commercialised, it would be desirable to market is as a self contained unit at means that it may not be desirable to minimise the signal from a particular sensor. It may be necessary to maximise the signal from a sensor in the resonator or even drive the ratio of two signals or the phase between two signals to a pre-determined value that would correspond to minimum sound power transmission down the duct. This latter approach is referred to as model reference control [27]. Tonal noise radiating from the open end of a duct can be controlled by varying the duct length. It is well known that when a source located in a duct, generates tonal sound at the resonance frequency of the duct, the sound radiated from the end of the duct can vary as the duct temperature changes. This is because the changes in temperature cause a change in wavelength of the sound propagating along the duct and this causes the difference between the excitation frequency and the closest duct longitudinal resonance frequency to vary. As the excitation frequency approaches a longitudinal resonance frequency, the level of radiated sound increases. For a typical industrial exhaust stack, the variation in sound power radiated from the end of the stack can be between 10 and 15 dB. Thus it is possible to minimise the tonal sound radiated from the end of a duct by controlling the duct length. This may be achieved by attaching an adjustable sleeve to the outside of the duct and moving it up and down with a stepper motor. This has been demonstrated and proven to be effective on a laboratory scale test rig (see Figure 5) [28]. The motor used to drive the sleeve was driven by a PLC under the control of a very simple algorithm. Initially, the sleeve is driven to the bottom of its travel. It is then advanced sowly upwards to the other extent of its travel and the location of minimum rms acoustic pressure is recorded. In practice, a narrow band filter is used to ensure that only the tonal noise is considered in the rms pressure signal. The sleeve is then driven to the minimum location. Periodically the sleeve is Figure 5. Exhaust stack with an adjustable sleeve to minimise the noise radiated from the top of the stack. Motor attached here moved up or down to track any changes in the location of minimum acoustic pressure. However, for a vertical industrial exhaust stack it would be much more practical to adjust the level of water in the sump at the bottom of the stack as shown in Figure 6 [29]. Figure 6. Exhaust stack showing a means of adjusting the effective length by pumping water into and out of a sump. Blocks I and 2 represent water pumps. #### 5. ACOUSTIC SENSORS FOR ACTIVE NOISE CONTROL It is well known that using acoustic pressure sensors to provide the error signal for an active noise control system has some limitations, including the generation of a very large noise reduction within 1/10 of a wavelength of the sensor but not much reduction at other locations (unless the active control noise source is close enough to the primary source to physically affect it is ound radiation ability. When microshors are used as error sensors, the pressure gradient in the vicinity of the error sensor in the controlled sound field can be quite large, which is a subjective problem—listenen just need to move their head at small amount and the noise level will vary by a large annual mount and the noise level will vary by a large and the result for less than the number of control sources, leds lly, there should be twice as many error sensors as control sources. Another way of reducing the pressure gradient problem is to measure it and include it in the objective function that is being minimised by the control system. Sensors that sense both the acoustic pressure and its gradient are referred to as energy density sensor. One such commercially available sensor is illustrated in Figure 7. A description of its use as a 3D sound intensity probe may be found in [30]. Figure 7. Optical, energy density sensor manufactured by Phone-Or Ltd (Israel). #### 6. VIRTUAL SENSING A significant disadvantage of using physical sensors at the location of the sound field minimum is that the greatest noise reduction is achievable right at the sensor, which makes it difficult for the person, at whom control is aimed, to have their ear in the same location. Attempts to solve this problem have given rise to a whole new discipline. Although a number of variations have been published, there are three basic methods for implementing a virtual sensor. The first involves putting an actual physical sensor at the virtual location where it is desired to minimise the sound field, prior to full implementation of the control system. Transfer functions between the temporary microphone at the virtual location and the permanent physical microphones at some distance from the virtual location are then measured for both the primary sound field and the controlling sound field. The physical microphone is then removed from the virtual location and the control system started. During controller operation, the transfer functions measured during initialisation are used to adjust the control algorithm so it can use error signals from the actual physical microphones to minimise the sound field at the virtual location. Of course the preceding description can be extended to apply to many more than one virtual location. The second means of implementing a virtual sensor consists of measuring the pressure gradient at the remote permanent microphones and then extrapolating this gradient quadratically or linearly to estimate the sound field at the virtual location. The third method again involves placing a temporary physical microphone at the virtual location and then uses an adaptive algorithm to adjust the contributions from each of a number of remote microphones so that the resulting combined signal matches the signal from the virtual location when exposed to the primary sound field. The above three methods and a number of variations are described in more detail in [13], [31] and [32] and the theoretical limitations to the accuracy of virtual sensing in a random sound field is discussed by Petersen et al [33]. #### 7 VIRRATION SENSORS In many cases where it is necessary to develop a compact active noise control system to reduce sound radiation from a vibrating structure, it is not practical to insert acoustic sensors in the surrounding sound field. In these cases it is desirable to be able to use vibration sensors on the structure to control the sound radiation. This is not as simple as it may at first seem, because reducing the overall vibration level in a planar structure may not reduce the sound radiation. This is because although normal vibration modes on a structure are orthogonal in terms of structural vibration, they are not orthogonal in terms of sound radiation. This means that reducing the vibration level of one or a number of modes will not necessarily reduce the overall sound radiation. There are two ways of overcoming this problem. The first [34] involves developing a sensing system that transforms the modes that are sensed so that they are orthogonal in terms of sound radiation but not in terms of structural vibration, so that reducing any one output of the sensing system will automatically reduce the radiated sound. Sensing systems would typically use accelerometers or piezoelectric patches as vibration sensing elements. The second way of overcoming the sensing problem is to use model cefference control [27]. In this case, the sensing system is initialised using physical microphones located such that when their signals are minimised, the radiated sound field is minimised. This is achieved using a feedforward adaptive control system. The outputs from the accelerometer on control system. The outputs from the accelerometer of the control system, the physical microphones are removed and their inputs to the control system, the physical microphones are removed and their inputs to the control system, the physical microphones are removed with the accelerometer signals. A new control algorithm is then used that attempts to divive the accelerometer signals to hose that were recorded during initialisation when the microphone signals were used to initialisation when the microphone signals were used to minimise the radiated sound field. #### 8. CONCLUSIONS Sensors and actuators are important components of any active noise control system and their cost often inhibits commercial applications of the technology. It has been shown that there are a number of sensor and actuator choices and even the potential to develop very low cost devices. However, it seems that mass market applications of active noise control will have to be found before the low cost possibilities will be fully developed. #### ACKNOWLEDGEMENTS The author would like to gratefully acknowledge contributions to this material from various
members of the ANVC group and in particular Dr Xun Li and Mr Guillaume Barrault. #### REFERENCES - [1] J. Yuan, "A hybrid active noise controller for finite ducts" Applied Acoustics 65, 45-57 (2004) [2] S. Liu, J. Yuan and K.-Y. Fung, "Robust active control of - 2734 (2002) Sound and Vib. 291, 749-763 (2006) - broadband noise in finite ducts" J. A. vust. Soc Am. 111, 2727-[3] J. Yuan, "Improving active noise control in resonant fields" J. - [4] M.Wu, Z. Lin and X. Oiu, "A Frequency Domain Nonlinearity for Stereo Echo Cancellation" IEICE Trans, Fundamentals, E88-A. 1.2 (2005). [5] M. Wu, X. Oiu, B. Xu, N. Li, "A note on cancellation path - modeling signal in active noise control" Sgnal Processing In [6] X. Oiu and C.H. Hansen. "Applying effort constraints on adaptive feedforward control using the active set method" J. Sound and - Vib. 260, 757-762 (2003) [7] X. Oiu, X. Li, Y. Ai and C.H.Hansen, "A waveform synthesis algorithm for active control of transformer noise - - implementation" Applied Acoustics 63, 467-479 (2002) [8] X. Oiu and C.H. Hansen, "An algorithm for active control of transformer noise with on-line cancellation path modelling based on the perturbation method". J. Sound and Vib. 240, 647-665 (2001). - [9] X. Oiu and C.H. Hanser, "A study of time domain FXLMS algorithms with control cutput constraint" J. Acoust. Soc Am. 109, 2815-2823 (2001) [10] X. Oiu and C. H. Hansen, 'A modified filtered-X LMS algorithm - for active control of periodic noise with on-line cancellation path modelline" Journal of Low Frequency Noise, Vibration and Active Control 19, 35-46 (2000) [11] X. Oiu and C.H. Hansen, "A comparison of adaptive feedforward - control algorithms for multi-channel active noise control" In Proceedings of WESPAC8, Melbourne, Australia, April, Paper - [12] M. R. Bai, Y. Lin, and J. Lai, "Reduction of electronic delay in active noise control systems-a multirate approach." J. Acoust. Soc Am. 111, 916-924 (2002) - [13] C.H. Hansen "Current and future industrial applications of active noise control" Noise Control Engineering Journal 53, 192-207 (2005). - [14] C.H. Hansen, "Understanding Active Noise Control", Spon Press - [15] C.H. Hansen, C.Q. Howard, K.A. Burgemeister and B.S. Cazzolato "Practical implementation of an active noise control system in a hot exhaust stack" In Proceedings of the Annual Meeting of the Australian Acoustical Society, Brisbane. November 12-15 (1996) - [16] P. Gardonio, E. Bianchi and S.J. Elliott "Smart panel with multiple decentralised units for the control of sound transmission" In Proceedings of Active 2002, 15-17 July, pp.471-486 (2002). - [17] C.R. Fuller and J. Carneal "A biologically inspired control approach for distributed elastic systems" J. Acoust. Soc Am. 93, 3511-3513 (1993). - [18] C.R. Fuller, M.R.F. Kidner, X. Li, and C.H. Hansen "Active-Passive Heterogeneous Blankets for Control of Vibration and Sound Radiation" In Proceedings of Active '04. Williamsburg, USA, September 20-22 (2004). - [19] P.E.A. Stuart "Variable resonator" US Patent 6.508.331 (2003). [20] J.D. Kostun, L.N. Goenka, D.J. Moensson and C.E. Shaw - "Helmholtz resonator" US Patent 6,792,907 (2004). [21] C.O. Paschereit, W. Weisenstein, P. Flohr and W. Polifke - "Apparatus for damping vibrations in a combustor" US Patent 6,634,457 (2003). [22] H. Kotera and S. Ohki "Resonator type silencer" US Patent - 5.283.398 (1994) [23] G. Kudernatsch "Exhaus' gas system with Helmholtz resonator" - US Patent 6.705.428 (2004). [24] LR. McLean "Variably uncd Helmholtz resonator with linear response controller" US Patent 5.771.851 (1998). - [25] C.R. Cheng, J.D. McInosh, M.T. Zuroski and L.J. Eriksson "Tunable acoustic system" US Patent 5,930,371 (1997). - [26] M.S. Ciray "Exhaust processor with variable tuning system" US Patent 6,915,876 (2005). - [27] R.L. Clark and C.R. Fuller "A model reference approach for implementing active structural acoustic control" J. Acoust. Soc Am. 92, 1521-1533 (1992) [28] M Jericho and J. Lock "Adaptive noise control for exhaust - stacks" Final Year Project Report, Department of Mechanical Engineering, University of Adelaide (1998). [29] B. Martin and B. S. Currolato "The floating exhaust stack", Final - Year Project Proposal, Department of Mechanical Engineering, University of Adelaide (2003). [30] B.S. Cazzolato, D. Halim, D. Petersen, Y. Kahana and A. Kots. "An optical 3D sound intensity and energy density probe" In - Proceedings of Acoustics 2005, 9-11 November, Busselton, Western Austrolia, pp.101-106 (2005) [30] C.D. Petersen, A.C. Zander, B.S. Cazzolato and C.H. Hansen "Optimal virtual sensors for active noise control in a rigid-walled - acoustic duct" J. Acoust. Soc Am. 118, 3086-3093 (2005). [31] C.D. Petersen, A.C. Zander, B.S. Cazzolato and C.H. Hansen "A moving zone of quiet using virtual sensing" J. Acoust. Soc Am. - (2006) [32] C.D. Petersen, A.C. Zander, B.S. Gizzblato, C.H. Hansen and R. Franciee "Limits on active noise control performance at virtual error sensors" In Proceedings of Active 06, September 18-20, - Adelaide (2006). [33] B.S. Cazzolato and C.H. Hansen "Structural radiation mode sensing for active control of sound radiation into enclosed spaces" J. scoust. Soc Am. 106, 3732-3735 (1999). # A REVIEW OF ACTIVE CONTROL APPLIED TO PLATES AND CYLINDERS Nicole Kessissoglou School of Mechanical and Manufacturing Engineering The University of New South Wales, Sydney, 2052 This page presents adaptive foodforward active control applied to simple structures comprised of beam, plate and cylindrical elements. For each system under consideration, by initially obtaining a good understanding of the physics of the structural and account responses, the active control application can be tuned to improve the control performance. In particular, the use of active structural acoustic control to attenues the structurally reducted usound fields in investigation. #### INTRODUCTION Sound radiation from distributed vibrating structures is a continuous problem in transportation and other industria. At low frequencies, passive control techniques provide a poor reduction in structural dynamic responses, promise a poor reduction in structural dynamic responses, promise a active control as a more attractive solution. A novel approach to actively attenuate the structurally realized sound fields is to directly modify the structural response. This is achieved by adding control inputs to the structure. The acoustic cost function is typically based on a global measure such as the radiated sound power, or the local sound pressure, radiated sound power, or the local sound pressure, the control technique is known as active structural acoustic control technique is Previous work on active control of sound radiating from structures has mainly dealt with homogeneous structures such as beams (Burdisso and Fuller, 1992) and plates (Fuller et al., 1991; Wang et al., 1991; Pan et al., 1992). Using actuator and sensor mechanisms associated with smart structures. ASAC strategies have been applied utilising piezoelectric materials as both the structural actuator and error sensor (Clark and Fuller, 1992). This ASAC strategy, where the structure is equipped with a sensor bonded to the surface, can be practical in cases when the use of acoustic sources such as microphones or hydrophones located in the surrounding fluid may not be practical (for example, in the case to actively suppress the externally radiated sound field from a submarine). It is important to note however that when using structural error sensors in an ASAC application, it is necessary to have an efficient design procedure and good a priori knowledge of the structure-acoustic coupling, due to the inability of the structural sensors to directly measure the acoustic response. ASAC techniques have also been employed to attenuate the structure-bone sound fields generated by substonic wave scattering at a structural discontinuity, which may be a boundary (Guiguea and Fuller, 1993), a line discontinuity (Ga and Fuller, 1991), a line discontinuity (Ga and Fuller, 1991) or a beam-stiffened plate (Kessissopkulst the influence of flexural near-field waves generated due to the presence of a structural discontinuity can be neglected in terms of the dynamic response, they significantly contribute to the far-field structurally indiated sound. While most ASAC systems are designed using feedforward control rechniques, active control of the andiated sound pressure from a simply supported plate has been investigated using feedback control (Meirovitch and Thangilitham, 1990). A good review of ASAC applied to plate systems and cylindrical structures is given by Fuller et al. (1996). This paper reviews the use of active vehibation control (AC) and active structural acoustic control (ASAC) based on a conventional adaptive feedforward algorithm, to respectively attenuate the structural and acoustic responses associated with a beam-stiffened plate and a cylindre shumereged in all falls. #### OVERVIEW OF ADAPTIVE FEEDFORWARD ACTIVE CONTROL The objective of fredforward control is to produce a secondary via disturbance to a system that cancels the effect of a price of disturbance at the location of an error sensor. Adaptive freedforward active control is effective in situations of disturbance is available. This signal is passed through adaptive filter, as shown in Fig. 1, where the output of the adaptive filter, as shown in Fig. 1, where the output of the adaptive filter is applied to the physical system by secondary sources. The filter coefficients are adapted in such a way that the error signal at one or more critical points is minimized. Figure 1. Block daggram of an adaptive feedforward control system (Widrow and Stearns, 1985). Local control is achieved as there is no guarantee that the response is reduced at any other locations other than the error sensor. Unless the response is dominated by a single mode, there are locations where the total response may be
amplified. Using the conventional adaptive feedforward least mean square (LMs) algorithm (Fuller et al., 1996), the optimal control force is obtained in what follows. Let the primary structural response (such as the fleward displacement of a beam or plate) be denoted by u(s). This can other be written in terms of the produce of the system transfer function G and the primary disturbing force F_s that is, $u(s) = F_s(f_s)$. When the produce of the system is the conoming vinculum response can be expressed as $u(s) = F_s(f_s)$, where G_s is the secondary structural response can be expressed as $u(s) = F_s(f_s)$, where G_s is the secondary transfer function. The total response at some point scan be obtained by adding the structural responses induced by the primary disturbance and the control force: $$w_{tor}(\mathbf{x}) = w_{p}(\mathbf{x}) + w_{s}(\mathbf{x}) \qquad (1)$$ A variety of cost functions can be developed depending on the response to the minimised, these cost functions may be the squared displacement or acceleration, kinetic energy, transmitted power, mean square sound pressure, out-of-plane velocity, etc. Using the squared error sensor output at a cost function to be minimized, a quadratic function expression in terms of the complex control force amonifolds its obtained as: $$J = w_{-}(w_{-})^* = F^*AF + F^*B + F^*B + C$$ (2) where the asterisk † denotes the complex conjugate, and $A = G^{\dagger} B = G^{\dagger} G F$ and $C = F^{\dagger} G F$. In the adaptive feedforward LMS algorithm, the optimal control force that results in the minimisation of the cost function can be obtained as by differentiating the cost function with respect to the read and imaginary components of the control force (Fuller et al., 1996). The optimal control force corresponds to the force value when both derivatives are zero, that $G(\partial F_{cos}) = 0$ and $G(\partial F_{cos}) = 0$. The optimal control force can then by obtained as: $$F_{s,sgs} = F_{s,red} + jF_{s,red} = -\frac{B}{A}$$. (3) ### APPLICATIONS OF AVC AND ASAC #### AVC of the wave transmission in a rib-stiffened plate Beam stiffened plates are commonly found in ship hulls, aircraft and machine casing. The transmission of plate flexural waves through a reinforcing beam is related to the coupling between the plate flexural waves and the flexural and torsional waves in the beam. For an infinite beam-stiffened plate, the maximum flexural waves transmission occurs at the optimal waves in the plate and the state of the coupling of the plate and and the flexural and torsional coince²⁰⁰⁰⁰⁰ conditions, respectively. The coincidence conditions are dependent on the angle of incidence of the flexural plane wave W_i propagating in the x-y plane in plate 1 and impinging on the beam boundary, as shown in Fig. 2. The relationship between the wavenumber k and the wavelength λ ($k=2\pi l \lambda$) allows the explanation of the coincidence conditions. The plane wave in plate 1 at a frequency ω has wavelength λ_{ω} , while the wavelength of the Figure 2. Beam-stiffened plate separated into three subsystems: plate 1, beam and plate 2, showing the flexural plane wave in plate 1 incident at the beam boundary. flexural wave in the beam at frequency ω is λ_s . λ_s and λ_s are not necessarily equal. If the intercepts of the incident wave on the v-axis equals the natural flexural wayblength of the beam as shown in Fig. 3, then optimal flexural trace wave matching occurs (flexural coincidence). Similarly, if \(\lambda\) matches the natural torsional wavelength of the beam $(\lambda = \lambda / \sin \varphi = \lambda)$, then optimal trace wave matching occurs between the plate flexural waves and the beam torsional waves (torsional coincidence). It is at these coincidence conditions that the greatest coupling between the plate and beam motion occurs. resulting in the maximum transmission of the flexural wave motion through the reinforcing beam. Since the plate and beam flexural wavenumbers vary with frequency in the same way, the flexural coincidence condition becomes frequency independent and occurs for a single angle of incidence only (ϕ =sin⁻¹(kJk)). The torsional coincidence condition is dependent on both angle and frequency, that is, the angle at which this coincidence condition occurs increases with the corresponding coincidence frequency (@=sin1(k./k)). The characteristics of the transmission of the plate flexus waves strough the reinforcing beam are shown in Fig. 4 for a frequency range up to 2000 Hz and for a relevant range of angles of the incident waves from 0° to 20°°. The modern stiffened plate has material properties of aluminium, with a structural loss factor of 0.00°, plate thickness of 1.6 max structural loss factor of 0.00°, plate thickness of 1.6 max structural loss factor of 0.00°, plate thickness of 1.6 max structural loss factor of 0.00°, plate thickness of 1.6 max considered conditions. Figure 4 shows that the flexural coincidence conditions, Figure 4 shows that the flexural coincidence condition occurs for a single incident rangle corresponding to $q_{\rm p} = 11.7^\circ$ for this beam-plate model. At torsional coincidence, the angle of incidence increases with frequency. Figure 3. Optimal trace wave matching between the plate and beam flexural versions. Figure 4. Flexural wave transmission in plate 2 showing flexural and torsional coincidences. An array of point control forces are applied along the length of the beam to excite flexural motion, and are equally distributed by a distance A (Kessissoglou & Pan, 1997). Similarly, point control moments can be applied to excite torsional motion in the beam. The error sensors are located in the far field of plate 2. Under plane wave propagation, the control forces are arranged to have the same magnitudes and perfected phases as follows: $$F_n^s = F_s e^{j\phi_n}, \quad n = -N,...,N$$ (4) For attenuation of the flexural wave transmission due to flexural coincidence, the phases of the point control forces can be arranged to have the same spatial phase variation to that of the primary flexural waves in the beam. The phases of the control forces become: $$\phi_n = k_B n \Delta$$, $n = -N,...,N$ (5) where $\Delta = 0.3\lambda_c$. It should be noted that this arrangement is similar to the biologically inspired control strategy, where a group of actuation are connected together with certain phase and amplitude relationship, and only one control signal is needed to drive them (Carneal and Fuller, 1995). Under point moment control, the phases of the control moments are arranged to be $g_a^a/\hbar n$ where $\Delta = 0.5\lambda_c$. The displacement at the error sensor locations in the far-field of plate 2 is busperposition of the primary transmitted waves and second flexural waves generated by the control forces. The cost function to be minimised is the squared total plate flexural displacement at the error sensor location $x_a = 10.5\lambda_c$ and averaged at M discrete locations along the y_a -frieretion. Figure 5 shows the flexural wave attenuation level at the error sensor locations $(x_2=10\lambda)$, and for 401 discrete locations along the y-direction corresponding to the range $(-2\lambda_2\lambda\lambda)$. Examination of a relevant range for the incident angle from b^2 to D^2 at excitation frequencies of 500 Hz and 1000 Hz shows that significant attenuation of around 14 dB has been achieved at the flexural coincidence angle of ϕ_1 =11.5°. The level of attenuation at both frequencies is the same. Due to the nature of the arranged control flores excitation, the radiated excordary or the arranged control flores excitation, the radiated excordary Figure 5. Attenuation levels of the flexural wave transmission at excitation frequencies of 500 Hz (solid line) and 1000 Hz (dashed line) using point control forces. Figure 6. Normalised magnitude of the optimal control force at 500 Hz (solid line) and 1000 Hz (dashed line). Figure 7. Attenuation levels of the flexural wave transmission at excitation frequencies of 500 Hz (solid line) and 1000 Hz (dashed line) using point control moments. flexural waves have poor spatial phase correlation with the transmitted primary waves away from the flexural coincidence angle, which results in poor attenuation. However, away from the coincidence condition, the beam itself acts as an effective passive attenuation device. Changing the frequency of excitation has no effect on the attenuation level or the angle at which attenuation is achieved, as the flexural coincidence condition is independent of frequence-point of refrequence-point of frequence-point frequence-poin Figure 8. Normalised magnitudes of the optimal control moments at 500 Hz (solid line) and 1000 Hz (dashed line). Figure 6 shows the corresponding dimensionless magnitude of the optimal control force F ..., which shows that a large force is required at the flexural coincidence angle. As the frequency increases, the beam is able to vibrate more freely and hence a slightly smaller amplitude of the control forces is required in order to generate secondary vibrational levels in the beam to match the primary flexural energy level in the beam. Under point moment control, attenuation of the flexural wave transmission is achieved for the same number of discrete locations along the y-direction as for the point control force application, corresponding to the range (-2λ,,2λ,). Figure 7 shows the attenuation levels of the flexural wave transmission using point control moments at excitation frequencies of 500 Hz and 1000 Hz. The peaks of the attenuation levels occur at the corresponding torsional coincidence angles of 1.5° and 3°, respectively. Unlike force control, as the frequency increases, the magnitudes of the control moments required for the same level of attenuation increases (Fig. 8). This is due to the fact that at higher frequencies, the beam
torsional stiffness relative to the plate bending stiffness increases (Goyder and White, 1980). #### ASAC of a rib-stiffened plate Using ASAC, the dynamic response of the ribbed plate can be modified to attenuate the structurally radiated sound field. In this ASAC application, the control forces are again applied to the beam, while the error sensing devices are located in the surrounding fluid. An incident wave propagating in the low frequency range corresponding to frequencies well below critical (where the in vacuo phase speed of the flexural waves in the plate c is less than the speed of sound in the fluid c), is known as a subsonic wave and does not radiate energy into the far-field of the surrounding fluid. When the subsonic flexural wave is incident on the beam discontinuity, the scattering of the structural wave field generates both supersonic and subsonic wave types in the structural response, resulting in structurally radiated sound. The structure is considered to be in air and hence the response is not affected by the fluid loading. For periodic distribution of the sound pressure in the y-direction (along the length of the beam), the sound pressure field is evaluated in a cylindrical coordinate system defined by $x=r\cos\theta$, $z=r\sin\theta$, v=0, as shown in Fig. 9. Figure 9. Sound pressure field evaluated in a cylindrical coordinate system in the x-z plane. An expression for the sound pressure field of the ribbed plate under plane wave incidence has been derived using the acoustic wave equation and structure-fluid coupling conditions at the surface of the plate (Junger and Feit, 1985). The expression for the primary sound pressure field is described in terms of both a non-integral component and an integration of the structural wavenumber spectrum. Each component is a function of the scattered structural waves (transmitted and reflected, propagating and evanescent plate flexural waves). The wavenumber spectrum of the integral component can be separated into supersonic and subsonic wavenumber spectrums. The supersonic wavenumber spectrum directly contributes to the far-field radiating sound pressure, whereas the subsonic wavenumber spectrum dominates the near-field acoustic response. The supersonic wavenumber spectrum is further restricted by a limiting range for the incident angle, where a must be less than the critical incident angle a, which is defined by $\varphi = \sin^{-1}(k/k)$ and k is the acoustic wavenumber $(k = \omega/c)$. The primary radiated sound power is obtained by integrating the acoustic intensity over a semi-cylindrical surface centred at the beam discontinuity, where the acoustic intensity is related to the mean square pressure. At the structural coincidence conditions, the far-field primary sound pressure level is slightly decreased. This is due to the fact that at the coincidences. there is a large amount of flexural wave transmission through the reinforcing beam, thereby resulting in a more balanced distribution of the structural waves along the x-direction (normal to the beam). It has been previously shown that an imbalance in the structural response along the x-direction will generate a greater number of supersonic wavenumber components, which will thereby result in an increase in the far-field radiated sound pressure. The phases of the control forces are pre-fixed such that the forces have a spatial phase variation with each other at the flexural coincidence condition. Although the primary structural response may be either at coincidence or off-coincidence, the secondary structural response is always generated by forces with the phase delay in the beam corresponding to that of the flexural coincidence condition. At flexural coincidence, the total-far-field sound pressure due to the superposition of the primary and secondary sound fields is optimised. At any off-coincidence condition, the superposition of the primary and secondary sound fields will result in the least increase in the supersonic wavenumber components to be attenuated. Using the control force approach described previously, in which for 2N+1 forces applied to the beam, the control forces have a pre-fixed phase relationship with each, only the complex amplitude P_i needs to be optimised. For minimisation of the acoustic responses, two cost functions are examined corresponding to (i) the square of the total sound pressure $|P_{ij}(r,\theta)|^2$ at a far-field error sensor location (r_i,θ) , and (ii) the radiated sound power. An expression for the total sound pressure is obtained by the superposition of the primary and secondary sound fields (Kessisosglou and Pan, 1998). Both cost functions can be expressed as a quadratic function in terms of the control force amplitude. Using the adaptive feelforward LMS algorithm, the optimal control force is obtained. Using the same material properties and dimensions of the ribbed plate and air to represent the surrounding acoustic field, the flexural and torsional coincidence angles are respectively ω=11.5° and ω=1.5° (for an excitation frequency of 500Hz). The critical incident angle defined by $\varphi = \sin^{-1}(k/k)$ is 14.5°. Since both coincidence angles are less than critical, they both contribute to the radiation of sound into the far-field. Figure 10 shows that only those incident waves with angles less than the critical incident angle contribute to the radiated sound power, as these angles correspond to the supersonic wavenumber spectrum (Kessissoglou and Pan, 1998). At incident angles greater than critical, there is very little sound power radiated into the far-field as the sound pressure is dominated by the subsonic wavenumber spectrum which only contributes to the acoustic near-field. An interesting feature in Fig. 10 is the effect of the structural coincidences on the far-field radiated sound power. At the structural coincidence conditions corresponding to q=1.5° and 11.5°, there is a decrease in the radiated sound power. This due to the fact that at a structural coincidence condition, the greatest plate flexural wave transmission through the beam occurs. As a result, the structural energy is more uniformly distributed in the plate and less energy is radiated into the acoustic fluid. As the incident angle approaches critical, the far-field sound power is a maximum as this condition corresponds to the optimal coupling between the structure and the fluid. Figure 10. Radiated sound power as a function of the angles of the incident wave. The radiated primary sound pressure at a far-field dimensionless radius of $k_p=10$ increases at directivity angles close to the surface of the plate $(0^{\circ}e) = 5^{\circ}$ and $175^{\circ}e = 6180^{\circ}$). This is due to the fact that even at a far-field radius, directivity angles close to the surface of the plate correspond to the near-field. Therefore, in order to accurately represent the radiated sound power, these 'grazing' angles were not included in the integration of the sound intensity, that is, the sound power was evaluated over the hemispherical range of $5^{\circ} \le \theta \le 175^{\circ}$ (centred on the beam). Figure 11 presents the attenuated sound power as a function of the error sensor location & for an incident angle of 11.5° (flexural coincidence). The attenuated sound power resulting from minimisation of the sound power and from minimisation of the far-field sound pressure at each local error sensor location in the range of 5°<8 <1.75° are compared. For the present control arrangement, using the radiated sound power as the cost function results in attenuation levels of 23dB, 16dB and 36dB for incident angles of 5° (off coincidence) 11.5° (flexural coincidence) and 14.5° (critical angle), respectively, Similar levels of sound power attenuation can be achieved by minimising the local sound pressure using a single error sensor located in the range of $45^{\circ} \le \theta \le 50^{\circ}$ or $130^{\circ} \le \theta \le 135^{\circ}$. The exact location for the optimal error sensor differs slightly for each incident angle of the incoming structural wave. Examination of the controlled sound pressure levels show that optimising the error sensor location results in a reduction in the radiation efficiency. The ASAC system can now be designed with an appropriate cost function and error sensor location to achieve the best control performance. For a single, optimally located error sensor, it has been shown that global attenuation of the squared sound pressure is achieved at all directivity angles away from the grazing angles (Kessissoglou and Pan, 1998). This reduces the complexity of the control application since using the sound power as the cost function would require an array of error sensors located in a hemisphere centred on the ribbed plate. Figure 11. Attenuated sound power as a function of the local error sensor location θ_{ρ} , resulting from minimisation of the sound power (solid line) and from minimisation of the far-field sound pressure at each local error sensor location in the range of 5^{*} - θ_{ρ} = (175. #### Active control of a finite cylinder Active control of the structural and acoustic responses of cylinders has manify concentrated on actuating and minimising the radial motion of the cylindrical shell. A review of earlier literature on active control to minimize cylinder interior acoustic fields (in the case of an aircraft interior) acoustic fields (in the case of sound radiation from a submarine or noise from piping systems) is given by Fuller et al. (1996). Active control of sound radiation form cylinders using piezoelectric actuators and structural sensors has shown to yield similar performances in attenuating the far-field radiated pressure as error microphones (Maillard and Fuller. 1999). In this section it is demonstrated that active modal control of both the axial and radial motions of a finite evlinder is required to globally attenuate the
structurally radiated sound pressure. An idealized model of a submarine hull is considered, which is modelled as a ring-stiffened cylindrical shell with finite rigid end closures, senarated by bulkheads into a number of compartments and under axial excitation from the propeller-shafting system (Tso et al., 2003; Dyleiko et al., 2005). The fluid loading effects are modelled as an increase in inertia of the shell. Lumped masses are added at each end to represent on-board equipment and to maintain a condition of neutral buoyancy. A schematic of the submarine model is shown in Fig. 12. Excitation of the hull axial modes causes both axial motion of the end closures, u, and radial motion of the shell, w. resulting in a high level of structurally radiated noise. Under axial excitation, it is assumed that only the breathing mode of the cylinder is excited which gives rise to an axisymmetric case. An expression for the radiated sound pressure contributed by axial movement of the end plates and radial motion of the shell was obtained using the Helmholtz integral equation (Junger and Feit, 1985), and by considering the radiating surfaces separately. Figure 12. Schematic of the hull under axial excitation. A secondary axial force F was used to excite the pressure hull at x=L, as shown in Fig. 13. For active control of the axial response of the end closures, an error sensor was located at each end of the pressure hull, denoted by es*. For control of the radial response of the hull, one or more rings of error sensors, es", were located circumferentially around the hull. It is important to note that due to the Poisson effect which causes counling between the axial and radial motions of the hull, the use of a control force to generate a secondary axial response will also generate secondary radial motion. Similarly, active control of the radial motion will also result in secondary axial vibration. This must be taken into account in the evaluation of the total radiating sound pressure due to the primary and control forces. The squared total axial or radial displacements due to the primary and control excitations were minimised at the error sensors using the adaptive feedforward LMS algorithm described previously. When both the axial and radial displacements were simultaneously controlled, two control forces were used, one for each of the displacements. Numerical calculations were performed on a ring stiffened steel cylinder of 6.5 m diameter, 40 mm hull plate thickness, 45 m length, and with two evenly spaced bulkheads of thickness Figure 13. Locations of the control force and error sensors for active control of the axial and radial motions of the finite bull 40 mm. The cylinder was submerged in water of density 1000 kgm². A neutrally buyant condition was maintained by 1000 kgm². A neutrally buyant condition was maintained by 1000 kgm², and with lumped masses of 200 tomes at each end. Internal structural damping was included in the analysis by using a structural loss factor of 00.2. A primary axial force of 11 N is applied to one end of the bull. The first three axial resonances were observed to be approximately 20, 24 and 64 Hz, as shown in figure 14. The small peak at approximately 29 Hz is caused by the resonance of the bulkheads. At the first and third axial resonances, the end plates of the cylinder are vibrating out of phase with cach both 24 the second axial mode, where the end plates of the obligation of the condition of the country for a proximately two-thirsts of the primary radiated pressure. x=L (dashed line). Active vibration control was applied at the second axial resonance of 24 Er. Figures 15(a) and (b) present the primary and controlled responses of the axial and radial motions, respectively, as a function of axial position along the hull (from x=0 to L). Comparison of the primary axial and radial motions shows that when the axial response is a maximum (at the cylinder ends and midway along the hull length for second axial mode), the radial response is a minimum, and vice versa. Figure 15(b) also shows the localised effect of the bulkheads. In Fig. 15(a), the squared axial displacement was simultaneously minimised at error sensors located at each end of the pressure hull. In Fig. 15(b), the squared radial section of the control t Figure 15. Primary (solid line) and controlled (dashed line) acceleration distributions of the axial (a) and radial (b) responses as a function of axial position along the length of the hull. displacement was simultaneously minimised at two rings of error sensors located at anti-nodal axial positions along the hull length. The corresponding magnitudes of the control forces are nearly unity, attributed to the axisymmetric motion of the hull and symmetry of the control application. Figure 16 shows the primary structurally radiated sound pressure at the scoond axial resonance. The radiated pressure for control of the radial response only and for control of both the axial and radial responses is given in Figs. 16(a) and (b), respectively. For control of the radial response, the control performance is strongly dependent on the error sensor locations for a given axial resonant frequency. Active control of both the axial and radial buil displacements results in complete cancellation of the radiated sound pressure. Excitation of the hull at one of its low frequency axial resonant frequencies results in an efficiently radiating structural mode. Due to the coupling between the axial and radial motions of the eylinder, a control actuator for each wave type is required. However, due to active control at a resonant frequency, the use of a single actuator for each wave type is sufficient. For active control at an off-resonant frequency, the modal density is higher and an increase in the number of control actuators is recurring to immrove the control performance. The number of error sensors should either be equal or greater than the number of control inputs used. Increase the number of error sensors can generally improve the attenuation achieved the to the cost function being closer to an estimate of a global property (such as kinetic energy or sound power), and is thereby more robust to changes in the physical system response. #### CONCLUSIONS This paper presents a review of adaptive feedforward active control and its applications to attenuate the structural and coussic responses: associated with beam-stiffened plate and cylindrical structures. In each case, a priori knowledge of the dynamics of the physical system has enabled arrangement of the control actuators and sensors to improve the control performance. For active control of the flexural wave transmission through the reinforcing beam of a stiffened plate, global attenuation of the plate vibration can be achieved using an array of point forces or moments to the beam. Mechanisms of the global control are due to the significant reduction in the beam flexural or torsional energy using an array of control forces or moments. researchiev. The control arrangement is Figure 16. Primary (solid line) and controlled (dashed line) radiated sound pressure for active control of the radial response only (a) and both the axial and radial responses (b). dependent on a pre-fixed phase relationship between the forces or moments using information on the flexural or torsional coincidences. Global attenuation of the structurally radiated sound fields can be achieved by carefully selecting the location of a single acoustic error sensor. In the case of a finite cylinder with rigid end cape scried at an axial resonance, active control of both the axial and radial motions is required to globally attenuate its acoustic signature. It is important to note that the arrangement of the control actuators and error sensors in the cases presented in this paper and corresponding levels of attenuation achieved, are dependent on coincident structural waves or modes of vibration contributing to the structural waves or modes of vibration contributing to the structural and acoustic responses are clearly defined. #### ACKNOWLEDGEMENTS The author would like to acknowledge Prof. Jie Pan from the University of Western Australia with whom the work on beam stiffened plates was conducted, and Drs Yan Tso and Chris Norwood from the Maritime Platforms Division, Defence Science and Technology Organisation, for the collaboration on active control of cylinders. R.A. Burdisso and C.R. Fuller, "Dynamic behaviour of #### REFERENCES - structural-acoustic systems in feedforward control of sound radiation", J. Acoust. Soc. Am. 92, 277-286 (1992). - J.P. Carneal and C.R. Fuller, "A biologically inspired controller", J. Acoust. Soc. Am. 98, 386-396 (1995). R.L. Clark and C.R. Fuller, "Experiments on active control - R.L. Clark and C.R. Fuller, "Experiments on active control of structurally radialed sound using multiple piezoceramic actuators", J. Acoust. Soc. Am. 91, 3313-3320 (1992). - P.G. Dylejko, N.J. Kessissoglou, Y.K. Tso and C.J. Norwood, "Reduction of the acoustic signature of a submerged v^{CSQ}!", Proc. Acoustics 2005, 9-11 November 2005, Busselton, Western Australia, pp. 427-432. - C.R. Fuller, S.J. Elliott and P.A. Nelson, Active control of vibration, London, Academic Press, 1996. - C.R. Fuller, C.H. Hansen and S.D. Snyder, "Experiments on active control of sound radiation from a panel using a piezoceramic actuator", J. Sound Vib. 150, 179-190 (1991). - H.G.D. Goyder and R.G. White, "Vibrational power flow from machines into built-up structures, Part II: Wave prospagation and power flow in Vearly-stiffened plates", J. Sound Vib. 68, 77-96 (1980). Y. Gu and C.R. Fuller, "Active control of sound radiation due to - subsonic wave scattering from discontinuities on fluid-loaded plates. I: far-field pressure", J. Acoust. Soc. Am. 90, 2020-2026 (1991). C. Guigou and C.R. Fuller, "Active control of sound radiation - C. Guigou and C.R. Pater, Active control of sound transation from a semi-infinite
elastic beam with a clamped edge", J. Sound Vth. 168, 507-523 (1993). M.C. Junger and D. Feit, Sound, structures and their interaction, - MIT Press, 1985. 11. N.J. Kessissoglou and J. Pan, "An analytical investigation of the active attenuation of the plate flexural wave transmission - through a reinforcing beam", J. Acoust. Soc. Am. 102, 3530-3541 (1997). N.J. Kessissoglou and J. Pan, "Active structural acoustic control of an infinite ribbed plate under light fluid-loading", J. - Acoust. Soc. Am. 104, 3398-3407 (1998). 13. N.J. Kessissoglou and J. Pan, "The effect of the structural coincidences on the acoustic fields radiating from a ribbed - plate", Int. J. Acoustics Vib. 5, 15-22 (2000). J.P. Maillard and C.R. Fuller, "Active control of sound radiation - from cylinders with piczoelectric actuators and structural acoustic sensing", J. Sound Vib. 222, 363-388 (1999). 15. L. Meirovitch and S. Thangjitham, "Active control of sound radiation pressure", ASME J. Vib. Acoust. 112, 237-244 - J. Pan, S.D. Snyder, C.H. Hansel, and C.R. Fuller, C. R. "Active control of far-field sound radiation by a rectangular panel - A general analysis". J. Acoust. Soc. Am. 91, 2036-2066 (1992). - Y. Tso, N.J. Kessissoglou, and C. Norwood, "Active control of a fluid-loaded cylindrical shell, part 1: dynamics of the physical system", Proc. Eighth Western Pacific Acoust. Conf. (Wespiege8). - Melbourne, Australia, 7-9 April 2003, Paper WE21. 18. B.T. Wang, E.K. Dimitriades and C.R. Fuller, "Active control of structurally radiated noise using multiple piezoelectric - actuators", AIAA J., 29, 1802-1809 (1991). B. Widrow and S.D. Stearns, Adaptive signal processing, Prentice Hall, Englewood Cliffs, New Jersey (1985). #### Farewell Scott This is the last edition of Acoustics Australia to be printed by Scott Williams. Scott took over the business from his father Fred and the two of them have printed Acoustics Australia - and before that the Bulletin of the Australian Acoustical Society - since Ausurs 1982 (Vol 10 & 2). Neville Fletcher, Marion Burgess, Joseph Lai (the previous editorial team), Howard Pollard, who was editor in chief in 1982, and the current editorial committee wish Scott all the best for his new career as a teacher. PRINTING Specialists in Scientific Printing and Publishing 91-93 Parraweena Road, Caringbah NSW 2225 PO Box 2740 Taren Point NSW 2229 Phone: 9525 6588 Fax: 9524 8712 Email: printing@dp.com.au مام A division of Cliff Lewis Printing 92 - Vol. 34 August (2006) No. 2 Acoustics Australia ## Future Meetings # Acoustics 2006 1st Joint NZAS and AAS Conference 20-22 November, Christchurch Registration details are now available for the 2006 Australian and New Zealand Acoustical Society Conference. This conference has the theme "Noise of Progress" and is to be held at the Clearwater Resort, Christchurch, New Zealand November 20-22 2006 Farly bird registration rates apply till | September 2006. The Keynote Speakers will include Professor Michael Vorlander, University of Aachen who willtalkon"Building acoustics: From prediction models to auralisation" and Professor Chris Tindle, University of Auctland on "Sounds interesting: Wavefronts, caustics, whales and reefs". An exciting program of contributed papers is being developed and once the papers have been reviewed, the deniled program will he available on the warm The social program includes a Conference Dinner at the Christchurch Town Hall. The dinner speakers will be Sir Miles Warren, who has been at the forefront of New Zealand's architectural profession and Professor Harold Marshall, who established Marshall Day Acoustice Information from www.conference.co.nz/ #### ASA ASJ Joint Meeting 28 Nov-2 Dec. Hawaii This 4th joint meeting of the Acoustical Society of America and the Acoustical Society of Japan will be held in Hawaii just preceding Internoise. Abstracts closed 30 June but Early bird registration rates are available until 24 October. Information from http://asa.aip.org #### Internoise 2006 #### 3-6 December, Hawaii Internoise 06 with the theme "Engineering a Quieter World" will be held at Sheraton Waikiki in Honolulu, Hawaii, USA 3-6 December, 2006. This conference will have all the features that one expects at an Internoise Conference as well as being in the relaxing environment of Honolulu - the congress banque will be a traditional luau. Details of the special and structured sessions are available from the webpage. Abstracts are due 15 May with completed papers 18 August. Early bird registration rates are available till 18 August. Information from www.internoise2006.org #### ICSV 14 #### 9-12 July, Cairns The 14th International conference on Sound and Vibration, ICSV14, incorporating the Annual Conference of the Australian Acoustical Society will be held 9 to 12 July, in Cairns, Queensland. IAV is an international non-profit scientific society affiliated with the International Union of Theoretical and Applied Mechanics (ULTAM), IAV currently has 50 individual members in 55 countries and is supported societies and expensionisms. The ICSV4 is, part of a sequence of congresses held in the National Conference of Congresses held in the USA (1996, 1992 and 2002), Russia (1993, 1996 and 2004), Russia (1994), Australia (1997), Demank (1999), Cerramay (2000), Hong Kong (2001), Sweden (2003), Portugal (2005) and Vienna (2006), each attended by COO) and Vienna (2006), cach attended by Theoretical and experimental research papers in the fields of acoustics, noise and vibration will be presented. Abstracts are due 1 Dec 2006. Information from www.icsv14.com #### ICA 2007 #### 2-7 September, Madrid The 19th International Congress on Acoustics in organized by the Sparitish Acoustical Society, and the Institute of Acoustica Model, and the Institute of Acoustics of Medid, under the auspices of the International Commission for Acoustics. (PA. This 5 day congress comprises plenary sessions, keynor percentations and contributed papers and posters. The ICA is a unique international acoustics congress as it welcomes papers in all areas of acoustics. Abstracts for the ICA 2007 are due by 30 animary 2007. #### Information from www.ica2007madrid.org Note that the Australian Acoustical Society is hosting the following ICA congress, ICA 2010, and is providing special travel grants for attendance at ICA 2007 see item elsewhere in this issue and www.acoustys.asn.au for details of the submissions. #### The customer is always wrong Confirming our fear about the acoustics and acoustic policy of some restaurnants (Acoustics Australia, 33, p45), the 'Good Living' section of the Sydney Morning Herald reveals that the owner of the 'Icebergs' restaurant at Bondi Beach is likely to increase the volume if dienes complain about the music. "I's great sometimes to rattle the dining room and remind the cilient that they are in your room." A pity, because the food is good and the view is great. #### Acoustics to the Schools The AAS is a cognate society of the Australian Institute of Physics (AIP) and at a recent meeting the opportunity to promote a career in acoustics as part of the AIP education program was recognized. Dr Mark Butler leads the AIP education program and is the Head Science Teacher at Gosford High School, NSW. He considered that the opportunities presented by a career in acoustics were little known and was enthusiastic to arrange a talk by an acoustic consultant. Ken Scannel agreed to undertake this task on behalf of the NSW Div of the AAS. Following is a short report from Mark Butler on Ken's talks. Mark is clearly pleased with the presentation and the interest it snarked in the students to see real application of what they are learning in school science. It is likely that this will become a regular activity for Gosford High School and we hope that, building upon this success, the message will be passed around the science teachers and the AAS will be asked to provide more taks in more schools. We hope that new the ball has been set rolling that members of the AAS will willingly take a break in their busy schedule and accept invitations to give a talk to science students in their local schools. Gosford High School is a government, academically selective school on the Central Coast of NSW with very strong "scince culture". We have found one of the most effective ways of exposing students to science and engineering in the 'real world' is to bring practising scientists and engineers into the School to seads to students. In May 2006, we had our first visiter specifies from the Australian Acoustics Society, Ken Scannel, a highly experienced Acoustics for the New York of the Australia Company of the first talk was to fifty senior Physics students and the second was to our Science Extension and the second was to our Science Extension on the Society of the Company of the Society of the Ken's enthusians for the subject and the large number of interesting demonstrations to the total the subject of the subject of the second of the other states that the subject of the second of the second for the second of the second of the second of the second involved student participation and Ken was mentaled with question from a very engaged Henry Adams said, "A teacher affects eternity, be never knows where his influence ends." I suspect Ken's short visit to use school may well have opened a few eyes to another application of science and to a possible career that students may have never previously considered. On behalf of the School I would like to thank Ken for his time and the Acoustics Society for supporting this initiative. We look forward to continuing this initiative and having an annual talk on acoustics as part of our school science programs. Dr Mark Butler, Head Teacher Science, Gosford High School #### Listen Hear! #### The Economic Impact and Cost of Hearing Loss in Australia Many of us are aware of relatives or friends with hearing loss, and the significant impact that this has on their ability to
communicate and to participate in society, but few of us would be aware that hearing loss represents a real financial cost to Australia of \$11.75 billion per annum or 1.4% of GDP according to a new research study by Access recommics. The report, officially delivered at the opening of the Audiology Australia National Conference in Perth, identifies that 1 in 6 Australians is affected by scaring bass, and this number is projected to increase to 1 in every 4 Australians by 2050. Hearing loss is age-related, affecting 3 in every 4 people aged over 70 years. The Listen Hear! Report, commissioned by the Cooperative Research Centre for Cochlear Implant and Hearing Aid Innovation (CRC HEAR) in partnership with VicDeaf, identifies that productivity loss related directly to hearing impairment accounts for well over half (57%) of the total financial costs - or some \$6.7 billion a year. CRC HEAR CEO, Associate Professor Bob Cowan, says the study is the first of its kind to quantify the economic costs and impact on Australia associated with deafness, and will be important for informing policy making and directing health and research resources to the preventive andtherapeutic interventions that are most cost effective. "Deafness suffers from low exposure and its full implications are not immediately obvious. However, this report allows the community to better understand the cost and resource issues associated with hearing loss. The study reports that hearing loss ranks with asthma, diabetes and musculoskeletal diseases in terms of burden of disability, and should be considered as a national health priority. Hearing loss reduces the capacity to communicate, and this in turn impacts on a person's life chances through the reduced opportunity to equitably participate in education, to gain competitive skills and employment and to participate in relationships. While interventions such as hearing aids and cochlear implants can enhance a person's ability to communicate, the majority of people with hearing loss (85%) do not use such devices." Excessive noise in the work place and social environments is not conducive to good hearing retention. With 36% of hearing loss attributable to excessive noise exposure all of which is preventable, approaches to better management of poise prevention are needed. "Now that the true costs are known, it's time to act to significantly reduce this impact on Australia's economy." Associate Professor Cowan said. "Research into mechanisms and behavioural approaches that encourage hearing loss prevention, improvements in hearing technology and more efficient ways to undertake clinical hearing assessments and (re)habilitation particularly in rural and remote areas are all required if we are to address the projected increase in hearing loss in our community" Report is available from www.audiology.asn. au/pdf/ListenHearFinal.pdf #### Wilkinson Murray Changes Wilkinson Murray opened an office in Hong Kong at the end of April. Barry Murray has relocated to Hong Kong to manage and develop the office. Barry expects Wilkinson Murray to take advantage of the large amount of infrastructure development occurring in the Asian region, particularly related to tunnelling works. Barry can be contacted at barrym@wilkinsonmurray.com.bk. To continue the development of the Sydney of office, John Wasserman Decime a director on office, long wasserman to be a director on the July, John ji keen to mainlain the excellent skills in air quality assessment. In line with these changes we have updated our corporate logo, changed our email addresses with these changes we have updated our email addresses and also separated Wilkinson Murray (sww. wilkinsommirray.com.au) and SoundScience (www.soundscience.com.au) #### Davidson relocation The NSW Davidson sales office and team have relocating to the Biolab Offices in North Ryde. Contact details: Unit 5, 19 Khartoum Rd, North Ryde NSW 2113, tel: 1-300-SENSOR (736-767), fax: 1-300-736-755, info@davidson.com.au #### Academy of Science Grants The Academy of Science is also calling for expressions of intent for support for travelling fellowships and for research conferences to be held in Australia. The closing date is for these is 30 September Information: www.science.org.au/awards/ research.htm ## SUSTAINING MEMBERS The following are Sustaining Members of the Australian Acoustical Society. Full contact details are available from www.acoustics.asn.au/sql/sustaining.php #### ACQUISTIC RESEARCH LABORATORIES ACRAN ACII-VIR ELECTRONICS ADAMSSON ENGINEERING PTY LTD ASSOCIATION OF AUSTRALIAN ACQUISTICAL CONSULTANTS BORAL PLASTERBOARD BRUEL & KJAER AUSTRALIA CSR RRADFORD INSULATION DEPT. OF ENVIRONMENT & CONSERVATION NSW. DOOR SEALS OF AUSTRALIA G P EMBELTON & CO PTY LTD GERERIT PTY LTD HPS ENVIRONMENTAL PTY LTD NOISE CONTROL AUSTRALIA PTY LTD. PEACE ENGINEERING PTY LTD SINCLAIR KNIGHT MFR7 SOUNDGUARD PYROTEK SOUND CONTROL PTY LTD VIPAC ENGINEERS AND SCIENTISTS LTD WORKCOVER COMPLIANCE COORDINATION TEAM ## CAIRNS 9 - 12 JULY 2007 Deadline for submission of abstracts (300 words) - 1 December 2006 #### Government support The Federation of Australian Scientific and Technology Societies (FASTS) gratefully acknowledges the decision announced in the budget to provide \$800,000 over four years. The President of FASTS, Professor Tom Spurling said the funding will provide a significant boost to FASTS' policy and analysis canability. As described in the budget naners. the funding has been provided to support "the Federation's role in policy formulation and raising public awareness in and promoting the importance of science and technology in addressing important national issues." Professor Spurling, FASTS president, said the funding sends a clear signal to the science and innovation sectors that the Government values informed and constructive contributions to debates on national policy. "The funding will also enhance FASTS' canability to build nonpartisan links between working scientists and Partiamentarians as exemplified by the highly successful, annual 'Science meets Parliament' initiative " #### Pathways to Technological Innovation The House of Reps Science and Innovation Committee has released its report on pathways to technological innovation. The report can be accessed at http://www.aph.gov.aw/liouse/ committee/scin/pathways/report.htm. The report makes a number of quite sensible recommendations although its overall position is to accent the basic policy thrust of Backing Australia's Ability and cognate policy settings. The FASTS summary includes recommendations for Better promotion of Government programs. DEST to establish working party to consider better 'whole of Government' approach and co-ordination. DEST to expand statistical data collection to include combined SET/Business degrees: SET graduates by state and territory; greater detail on SET qualifications and subjects of international students and workforce participation rates Govt should introduce support mechanisms to assist innovation other than through start-ups. DITR to extend support for later stage commercialisation including marketing and sales strategies #### Science Education Directions On 7th of August, FASTS hosted a meeting to discuss the current state and future directions of science education. The rationale for calling this meeting was that FASTS believe that while working scientists, educators and communicators are well aware there are problems in science education, there is not a shared view on: what the problems are: how they might be addressed; what role(s) should or could working scientists and their organisations play in science education. Participants at the meeting included representatives of groups with a strong professional interest in science education including science and mathematics teachers associations. Deans of Science, the Academies, professional societies and public sector research agencies. The meeting will open with a presentation by DEST giving an overview of science education programs and preliminary discussion of the audit of science skills shortages FASTS will use the outcomes from this meeting in their discussion with the Government on science education policy. One finding from survey is the importance of showing at the high school level that there are interesting, challenging and stable career prospects. This is surely relevant for the AAS and should be the prompt for the membership to take any opportunities to show the opportunities that are available for those entering the acoustics profession. #### Noise on the menu. The recent CitySounds survey conducted in Melbourne found that over one half of the respondents felt that cafes had become noisier in the last 3 years. More than half the diners under 35 had experienced difficulty holding a conversation and 78% over 35 had experienced difficulty. See http://www.melbourne.vic.gov.au/info. cfm?top=46&pg=3009 ## **AUSTRALIAN ACOUSTICAL SOCIETY** TRAVELLING GRANT 2006 for Participation in ICA 2007 The Australian Acoustical Society Travelling Grant has been established to encourage members of the Society to attend the International Congress on Acoustics in Madrid, August 2007. Two travelling grants will be awarded, each of \$1,000. The grant is open to any member of the Society of Grande Fellow, Manuber, Graduate, Associate or Student. A brief backgroung An outline of b their career and/or studies in acoustics. nce the profile of Australian An outline d acoustics. Applicants prop should include an abstract The selection committee may seek accurring applicant as part of its selection process. Each applicant must provide a report (500 words from ICA 2007 on the experience. Submission of entry: Entires should be forwarded by 30 September 2006 in electronic form, to: GeneralSecretary@acoustics.asn.au These may be printed in Acoustics Australia. ## Standards Australia Standards Australia has a very extensive list of standards and the AAS has representation on most
committees with responsibilities for production of standards primarily on acoustics and vibration. However there are a great number of Australian Standards that have only a small section on acoustics and vibration and its not always assured that these sections of the standards will be referred to those with expertise in acoustics and vibration prior to publication. The problems this can lead to were mond in a previous issue of the journal (Acoustics Aust Vol 33, No 3 p113) when Ian Hillock identified errors in the vibration related appendix to a new explosives Standard and Marion Burgers identified sections of old marine related standards that were inconsistent with recent noise management standards. The AAS Council has recently written to Standards Australia seeking that AAS be advised during the preparation and public comment period of all standards that may have any content on acoustics or vibration. The Council will then call upon the advice of appropriate representatives from the AAS to review the proposed standards and provide comment to Standards Australia. With this support from the membership it is hoped that in due course all the acoustics and vibration ## New Products The SoundPro® SE/DL Series includes ### OHEST #### SoundPro Series Advanced Hand Held Sound Level Meters and Real-Time Frequency Analyzers. When used with OuestSuie® Professional II applications software, you can simply and reliably perform advanced noise analyses. All meters include two virtual sound level meters to simultaneously measure multiple regulatory requirements. Meters equipped with 1/1 and/or 1/3 octave real-time frequency analysis allow you to choose either real time analyzer or broadband measurements for one of the virtual sound level meters. Use high speed USB or removable SD memory to transfer data from your sound level meter to your computer for further analysis. With a total of twelve available models in the the SoundProft SE/DL Series, one of these noise exposure meters is certain to meet your specific requirements. Information: Air-Met Scientific Pty Ltd, peter. shiels@airmet.com.au, www.airmet.com.au ## LMS #### Mobile front-ends and Test.Xpress analyser At the annual LMS user conference in has been extended with a new LMS SCADAS Mobile series of mobile and ultra-portable data acquisition front-ends. LMS Test Lab is tightly integrated with the new SCADAS Mobile front-end and gains a new solution for mobile poise and vibration testing LMS also strengthens its offering in the areas of qualification, and troubleshooting testing with LMS Test.Xpress, a powerful sound and vibration analyser and data recording solution, based on the same LMS SCADAS Mobile front-end Information: info@davidson.com.auNEW Sustaining Member Sinclair Knight Merz (Vic) Member Preston Adams (Old) Rebecca Donovan (Old) Mark Latal (NSW) Matthew Goodfellow (Old) Savithr Shimada (NSW) Graduate Simon de Liele (vic) Aaron Lepp (Old) Student Matthew Vance (Vic) ## Book Reviews ## Sound Images of the Ocean in Research and Monitoring, Peter C. Wille. Springer-Verlag, 2005, 472 pages (hard cover), 452 illustrations, 391 in colour with CD-ROM. Hardcover. ISBN: 3-540-24122-1 Price approx. AS187 from DA Information. Service, www.dadirect.com.au. Only in recent decades has the detailed structure of nortions of the oceanic deeps been realised through swath sonar acoustic instrumentation, but the imagery obtained has been confined largely to specialists. This book aims in particular to introduce the spectacular geological formations and sedimentary bedforms in the deep oceans revealed by the acoustic methods to a much wider audience. The bathymetric features in 322d range from the global scale (with the help of other techniques such as gravity anomaly detection), spreading ridges and associated trenches, continental shelves and canyons, to finer scales such as mud volcanos. reef structures, and seagrass beds. In pursuit of its main aim, the book presents an impressive collection of colour-coded imagery of the seabed obtained by multibeam swath bathymetric sonar. The power of acoustics to provide 3-D seabed imagery via Digital Elevation Models and fly-throughs is demonstrated with files on CD-ROM which can be viewed and manipulated as 3.D images on computer screens using the Fledermaus software (Wint, the vertical exaggs-gation can be changed by clicking on the widget). 2-D imagery obtained by another type of swath sonar, sidescan sonar, is used to complement the multibeam data. Mention is made of the increasing role of Autonomous Undersea Vehicles (AUVs) in carrying these acoustic instruments to the deep scabed, enabling higher resolution data to be obtained than from surface vessels However, the book is not confined to the seabed, not to goology. Acoustic remote sensing techniques can also be used to probe the sediment column, a process known as sub-bottom profiling. The ocean volume can be acoustically profeed to gain information on ocean currents, fish stocks, and other performance such as bubbles and gas transfer such as Acoustic Deppler Current Meters (ADCP)s, and abbottom profilers measure a time series of acoustic response from a single direction, rather than across a wath, and usually point downwards into the ocean or into the seabed. ADCPs estimate ocean or into the seabed. ADCPs estimate ocean current vectors through the water column by measuring the Doppler shift off particles in the water. Parametric sonars use nonlinear acoustic effects to generate low frequencies which can penetrate the seabed, to reflect at the interfaces between sediments of different acoustic impedances, revealing seabed structure. Attaching these instruments to moving vessels allows cross-sections of water column or seabed narameters to be visualised. Sounds emitted by marine ereatures can be imaged as sonograms. Manmade objects such as wrecks, ninelines, and archaeological structures may be imaged by acoustic methods. Acoustic tomography can he used to reconstruct the three-dimensional temperature field, or changes in best content over particular paths. Subsurface drifters can be acoustically tracked. Acoustics provides a window to the sea at many levels. Who would benefit by reading this book? The foreword say the book is written for the non-expert in marine acoustics who may be a scientist from a neighborring faculty e.g. repearchers and lecturers in occanography, emrine goology, environmental sciences, such as the second of the control of the second The book barely mentions the use of acoustic backscatter from single beam or swath systems to assist in characterisation of sediment type or benthic habitat, but this is an ongoing topic of intense interest in many fields e.g. environmental protection, geological classification of surficial sediments, and so on. The book is certainly not a text book on marine acoustics, nor on swath sonar, It does not aim to be such but details on how the principal sources of the images (swath sonars) work, is glessed over. If you do not know how they work before you read the book, then you will probably not know afterwards. Nor will you know much about their capabilities. weaknesses, data processing requirements, nor even that different types of multibeam sonars exist which use different principles of operation. The book considers there to be four lines of evolution of ocean echosounding: the multibeam echosounder, sidescan sonar, sub-bottom profiler, and the acoustic Doppler current profiler. I can think of at least two more marine acoustic technologies amenable to visualisation techniques worth a mention: monitoring of suspended sediment concentrations through the water column by MHz frequency backscatter systems, and Acoustic Daylight, the process of using ambient noise to image objects. Local (Namples of these two applications for Acoustics Australia readers may be found in Hamilton (1998) and Readhead (2001). Acoustic cameras have also been produced. one type of which is essentially a miniature multibeam sounder. Surprisingly, this receives no mention. The book could also do with some more editing. For example, it is stated more than once that Posidonia seagrass is found only in the Mediterranean but this should be Posidonia oceanica. The book eschews equations, and the qualitative descriptions of acoustic processes offered in introductory sections are consequently sometimes rather onaque. The introductory sections strive to be more than bare science, and are more interesting than straight text books, but they are rather long, and there seems to be a breathless rush to get through them to the main issues while throwing in as much as possible. Some reconstruction of these sections would benefit the reader. I find the lack of simple equations difficult to understand, given that professionals are the major intended audience. If explanations of acoustical processes and principles of the various sonars described are required, then companion texts are needed. Publicity for this book says it is the first of its kind, offering a comprehensive overview of acoustic imaging applications in the various fields of marine research, including utilization, surveillance, and protection, and that it is written to be accessible to professionals in diverse related fields. I would say that it largely succeeds in these aims. It is in the category of books which make for compulsive reading. It is well worth adding to a research library for the overviews it provides, largely by way of case studies, particularly of the geological processes. For many, the illustrations and descriptions of the various underwater processes will be quite a revelation, however, this visually compelling book is far more than a collection of pretty pictures. The book should be a useful addition for those interested in applications of acoustics to marine science. #### References Hamilton L.J. (1998). Calibration and interpretation of acoustic backscatter measurements of suspended
sediment concentration profiles in Sydney Harbour. Acoustics Australia 26(3), 87-93. Readhead, M. (2001). Acoustic daylight using ambient noise to see underwater. Acoustics Australia 29(2), 63-68. 3-68. L.J. Hamilton Les Hamilton is a Senior RESULTIFIC for the Defence Science & Technology Organisation (DSTO). He works in various expects of physical occanography, including acoustic school classification, the process of using echoei sumulated by single beam, sidescan, and milibeam sonars, to characterise seabed sedimints. #### Managing Noise and Vibration at Work: A practical guide to assessment, measurement and control Tim South elsevier com au Elsevier, 2004, 268 pages (soft cover), ISBN: 0.7506.6342.1 Price approx AS77 from Elsevier www. Tim South has been teaching the courses on workplace noise and vibration assessment as part of the UK Institute of Acoustics programs. The book is a comprehensive text and reference for those courses. It has a well planned structure and a practical approach to presenting the material. In the preface, the author states that he spent some time considering how much mathematics to include in the book. In my oninion he has achieved the right balance. Part 1 on Noise commences with noise. human response and measurement then proceeds with methods for assessment of exposure. It is at this point a problem arises for the Australian reader for all the references are to the UK or EU standards, legislation and directives. Similarly, Parts 2 and 3 on vibration commence with the concepts and proceed to assessment methods. As there is effectively no legislation in Australia regarding human vibration, the UK and EU criteria are an appropriate default reference. Part 4 deals with methods for reducing noise and vibration risks The strengths of this book are that it includes both consideration of noise and vibration and that it gives practical examples including photographs of measurement, assessment and control in the workplace. With the reservation that the Australian methods of assessment are not discussed. I recommend this book to anyone involved with managing workplace noise and vibration #### Enhancing Occupational Safety and Health Geoff Taylor, Kellie Easter and Roy Hegney Elsevier, 2004, 600 pages (soft cover), ISBN: 0.7506 6197 6 Price approx AS99 from Elsevier www. elsevier com su This book aims to address all aspects of occupational health and safety (OHS). As such it provides little more than an overview of occupational poise and vibration with only 10 pages on workplace noise and 2 pages on vibration. The authors state that the book has been written as a practical guide for students and those working in OHS. The three authors are based in Perth and the Australian link is promoted. However the authors state that the book has been written to appeal to "anyone dealing with health and safety in any country which has a substantial English-speaking connection." They rely very much on the UK documentation and unfortunately do not include any reference to relevant Australian standards or codes. Further, there is no reference to the EII directive for occupational noise which one would expect to see in a new book. The coverage of vibration is very superficial and again there is no mention of the EU directive for workplace vibration It is obvious that a guide to all aspects of OHS cannot cover every aspect in detail but it should direct the reader to sources of additional information This book does provide a good overview of management of the various aspects of OHS including the background on legislation etc. As such it would be interesting background reading for acoustic consultants who are working extensively in the area of occupational noise assessment Marion Buryess Marion Burgess is a Research Officer for the University of NSW at the Australian Defence Force Academy in Conberra. She has experience with occupational noise surveys and with presenting courses on the topic. ### ART Sales & Hire Noise, Vibration & Weather Loggers RION analysis New EL-316 Type1 Noise Looper New EL-315 Type 2 Noise Lonner Push button programming menu Enlarged memory Fixed post microphone Overload indicator Tripper functions Ontional mobile modem Sound & Vibration Measuring Instruments New peneration of Rion meters NI -20 Tyne 2 snand level meter NI -21 Tyne 2 snund level meter NL-31 Type 1 sound level meter Comply with IECR1872-1 standard Measure and store perceptile statistics Ontional memory card for data transfer Ontional filter card for frequency ## Acoustic Research Laboratories Noise and Vibration Monitoring Instrumentation for Industry and the En A SOUND THINKING GROUP Company ARL Sydney: (02) 9484-0800 Wavecom Melbourne: (03) 9897-4711 Instru-Labs Perth: (08) 9356 7999 Wavecom Adelaide: (08) 8331-8892 Belcur Brisbane: (07) 3820 2488 # Made in German PTB Type Approval No: 21.21 | 06.01 - Soundbook™ + SAMURAI™ = the All-in-one instrument from SINUS Messtechnik GmbH Multichannel sound level meter according IEC 61672-1, IEC 60804 and IEC 60651 type 1 - SAMURAI™ basic software includes DAT-recorder, frequency analyzer, reverberation time - 2/4/8 channels with 40 kHz bandwith, 2 tacho-, 5 AUX- und 2/4 analog output channels - Various software options available for a wide range of applications in acoustics und vibration Remote control, network integration and synchronization of several devices possible... & New Zealand PO Box 265 The Gap representative: OLD 4061. Australia Phone: (617) 3300 6288 Fax: (617) 3300 6244 www.saverv.com.au isavery@savery.com.au ## ICA 2010 ## ICA2007 Madrid, 2-7 September, 2007 This is the fourth in a series of regular items in the lead up to ICA in Sydney in 2010. The previous item in this series (Dec 2005 issue) summarised the purpose and governance of the International Commission on Acoustics and the nature of the primary activity, namely the International Conference on Acoustics. This item provides information on the Concress to be held in 2007 in Madrid - the precursor to ICA2010 in SACHO. The International Commission on Acoustics (ICA) is held every three years and the Commission takes great care with the selection of the venue for the congress and the capability of the organizing committee to meet the high standard of technical quality that the ICA has become known for. As an acoustics congress the ICA is similar to a number of acoustics conferences beine held simultaneously. The ICA 2007 to be held in Madrid, Spain from 2-7 September 2007 has the theme "Acousties for the 21st Century". It will follow the tradition of an ICA congress with a full program over 5 days. The program will be confirmed over the coming year and it will comprise at least one plenary lecture each day. The plenary lecturers will be selected for their ability to provide an interesting and stimulating review of the latest technical advances in their particular area of acoustics. Thus attending the plenary lectures is one way to broaden your knowledge of acoustics. Distinguished lectures scattered throughout the day may be in parallel providing a choice. The remainder of the program comprises parallel sessions in the various topic areas either in the form of structured sessions and contributed papers. In addition there will be poster sessions, demonstration sessions and technical exhibition. Following the ICA there will be satellite symposia which will provide a focus for two specific topic areas in acoustics. ISMA 2007 will be the International Symposium on Musical Acoustics and will be held from 9 to 12 September in Barcelona. ISRA will be the International Symposium on Room Acoustics and will be held from 9 to 12 September in Sevilla. Registrations for these satellite conferences can be made in conjunction with the ICA or independently. September 2007 may seem a long time away but the planning for attendance at this important event on the Acoustics calendar needs to start soon. The date for abstract submission date is 30 January 2007 and the full papers will be due in May. The Australian Acoustical Society is encouraging a high representation at this congress to show case the high standard of acoustics in our region and to encourage a high international participation at the ICA 2010 in Sydney. To further encourage attendance, the AAS has established two traveling grants for attending ICA 2007. Each grant is worth \$1,000 and the application details can be found from www.acoustics.asn.au. The main assessment will be based on bow attendance at ICA 2007 will enhance the applicants career and/or studies in acoustics and how participation at the ICA will enhance the profile of acoustics in our region. The deadline for application for these grants is 30 October 2006. Participation in ICA 2007 provides a great opportunity to justify a trip to Europe in late summer and to extend to stay to enjoy a boliday in the region. Spain is an exciting, historical, fascinating country and a wonderful holiday destinant and September is just after the main European summer season so travel becomes a little easier. The organizers of ICA2010 in SWedee hope to see many Australians and New Zealanders at ICA 2007 in Madrot Post Country and SWED SW Marion Burgess ## NEW Environmental Module for SOLO SLM The new ENV module for SOLO SLM consists of a ready-to-use predefined setup which makes the measurements very easy to achieve. While it is measuring, Solo calculates, displays and stores the following inclines: - Energy spectral distribution of the signal: - LCeq-LAeq and LZeq-LAeq: Indicates whether the signal contains low-frequency energy. Stationary and impulsivity of the noise source: - LAeqMax(100ms) Cea-LAea= 005.1dB UZeg-LAeg 015.1dB LAcri 100msMax = 94 RdB LAeo100ms-LAeo1s=005.1dE L50(1)-L90(1)= 003.1dB LAca1-L90= 015.0dB 00:01:15 01s [4] Storage E(A)= 005.3dB - LAeq(100ms)-LAeq(1s): low value = steady signal; high value = impulsive noise - L10(1)-L90(1): a high value evidences a repetitive pulse signal LAeg1-Lx2: shows
the stationary of the noise source - (LAeq1) compared to the background noise statistic level (Lx2 is L90 by default). Small value = stationary noise source. Emergence of the noise source compared to the - background noise: E(A)=LAeq(coded noise source)-LAeq(background noise): overall emergence as it is defined in the regulations. ## Calibrations, Sales, Hire & Service ## ACU-VIB Electronics Acoustic and Vibration Electronics Reg. Lab. No. 9262 Accurate and Vibration Measurements Unit 14, 22 Hudson Ave Castle Hill, NSW 2154 Tel: (02) 9680 8133 Fax: (02) 9680 8233 Email: info@acu-vib.com.au Website: www.acu-vib.com.au How low can you go... and still get good noise control? Wavebar® controls low frequencies that frustrate other acoustic insulation materials. Wavebar® readily cuts, wraps, shapes and drapes. Wavebar® excels at insulating walls and roofs insulating walls and roofs acoustically. Wavebar® is flexibile with high tear and tensile strength. 36 662 OF VISIT WWW.SOUNCEWATCLOOM.AU)))) Soundguard Protect Control Wavebar® exclusively by Soundguard 18-20 September, Leuven ISMA2006, Noise and Vibration Engineering Conference http://www.isma-isaac.be http://www.active2006.com 18 - 20 September, Bristol. 12th Int Conference on Low Frequency Noise & Vib and Control. http://www.lowfrequency2006.org 18 - 21 September, Pittsburgh INTERSPEECH 2006 - ICSLP. secretariat@aipn.com au www.interspeech2006.org 27-29 September, Sydney 8th National Injury Prevention Conference 3 - 6 October, Vancouver IEEE International Ultrasonics Symposium. http://www.ieee-ultrasonics2006.ore 19-20 October, Cincinnati Noise induced hearing loss in children at work and play http://www.hearingconservation.org/conf_ childrenconf.html 20 = 22 November Christchurch 1st Joint Australian/New Zealand Acoustical Societies Conference "Noise of Progress" http://www.conference.co.nz/index.cfm/ acoustics/16 28 November - 02 December, Honolulu Acoustical Soc of America & Acoustical Soc of Japan Joint Meeting, http://asa.aip.org 3-6 December, Honolulu Inter-Noise 2006 Engineering a Quieter World www.internoise2006.org 3-8 December, Brisbane AIP Conference www.ainc2006.com 2007 10 - 12 April, Loughboro 4th Int Conf on Bio-Acoustics. http://www.ioa.org.uk 16 - 18 April, Kanagawa 16 - 18 April, Kanagawa 29th Intl Symp on Acoustical Imaging. http://publicweb.shonan-it.ac.jp/ai29/AI29. html 16 - 20 April, Honolulu IEEE Intl Conf on Acoustics, Speech, and Signal Processing (IEEE ICASSP 2007), www.icassn/2007.org 16 - 20 May, Honolulu, IEEE Int Conf on Acoustics, Speech & Signal Processing (IEEE ICASSP 2007) http://www.icassp2007.org 03 - 07 June, Bologna 11th Int Conf on Hand-Arm Vibration. www.associazioneitalianadiacustica.it/ HAV2007/index.htm 18 - 21 June, Aberdeen Oceans07 Conf. www.oceans07ieeeaberdeen.org 25 - 29 June, Heraklion 2nd Int Conf Underwater Acoustic Measurements: Technologies and Results. www.uam2007.sr 9-12 July, Cairns ICSV14 incorporating AAS Annual Conference 26-29 August, Istanbul. Inter-noise 2007. http://www.internoise2007.org.tr http://www.internoise2007.org.tr 27-31 August, Antwerp INTERSPEECH 2007. conf@isca-speech.org 2-7 September, Madrid ICA2007 www.ica2007madrid.ore 9-12 September, Barcelona. Symposium on Musical Acoustics (ISMA2007) www.ica2007madrid.org 9 - 12 September, Sevilla Symposium on Room Acoustics www.ica2007madrid.org 17-19 September, Lyon Fan noise 2007 www.tannoise2007.org 28 - 31 October, New York IEEE Int Ultrasonics Symposium. www.iece-uffc.org/ulmain. asp?page≈symposia 2008 30 June - 4 July, Paris, Acoustis'08 Paris http://www.acoustics08-Paris.org 28 July - 1 August, Mashantucket ICBEN 9 Int Cong Noise as a Public Health Problem. www.icben.org INTERSPEECH 2008 - 10th Intl Conf on Spoken Language Processing (ICSLP). www.interspeech2008.org 2010 23-27 August, Sydney ICA2010 http://www.ica2010sydney.org/ 22 - 26 September, Brisbane Meeting dates can change so please ensure you check the www pages. Meeting Calendars are available on http://www.icacommission.org 500 Australian standards to be cut. Standards Australia is to withdraw 500 standards of which 29 are specifically acoustics and vibration and others may well include relevant sections on acoustics. The listing of those to be culled is http://www.standards.org. au/cat.asp?catid=135&ContentId=79 For some of these withdrawal may well be appropriate as they are outdated or have been substantially replaced by other standards. However Members may be surprised at the withdrawal of those which are referenced in specifications and for which there will be no equivalent AS - for example the entire AS 1217 series on measuring sound power! If you are concerned about the deletion of any of these please advise Standards Australia directly, copying your message to GeneralSecretary@acoustics.asn.au so that the AAS can keep track of the comments and provide additional follow up as necessary. ## AUSTRALIAN ACQUISTICAL SUCIETY ENQUIRIES #### NATIONAL MATTERS * Notification of change of address * Payment of annual subscription * Proceedings of annual conferences General Secretary AAS- Professional Centre of Australia Private Bao 1. Darlinghurst 2010 Tel/Fax (03) 5470 6381 email: GeneralSecretary@acoustics.asn.au www.acoustics.asn.au #### SUCIETA STIBSCRIDATION DATES For 2004/2005 Eigensial Vos | Fellow and Member \$110.00 | | |--|--| | Graduate, Associate and Subscriber \$85.00 | | | | | Student Including GST ### DIVISIONAL MATTERS Enquiries regarding membership and sustaining membership should be directed to the appropriate State Division Carretory AAS - NSW Division Mr Neil Gross c/- Wilkinson Murray Level 1 123 Willoughby Board Sec: Ms T Gowen Tel (02) 8218 0500 Fax (02) 8218 0501 toower@poc.com.au CROWS NEST NSW 2065 AAS - Ougensland Division PO Box 760 Spring Hill Old 4004 Sec: Richard Devereux Tel: (07) 3217 0055 Fax: (07) 3217 0066 rdeverein/@acran.com au AAS - SA Division Department of Mech Eng University of Adelaide SOUTH AUSTRALIA 5005 Sec: Anthony Zander Tel: (08) 8303 5461 Fav: (08) 8303 4367 azander@mecheng. adelaide.edu.au AAS - Victoria Division PO Roy 417 Colline St Wast PO MELBOURNE 8007 Sec: Jim Antonopoulos Tel (03) 9695 9100 Fax (03) 9695 9111 iim antonopoulos@ heppies.com.au AAS-WA Division Unit 3 2 Hardy Street SOUTH PERTH 6151 Sec: Norbert Gabriels Tel (08) 9474 5966 Fax (08) 9474 5977 gabriels@inet.net.au ## ACOUSTICS AUSTRALIA INFORMATION ### GENERAL BUSINESS \$25.00 **Advertising Subscriptions** Mrs Leinh Wallbank PO Box 579, CRONULLA 2230 Tel (02) 9528 4362 Fax (02) 9589 0547 wallbank@zipworld.com.au ARTICLES & REPORTS NEWS. BOOK REVIEWS **NEW PRODUCTS** The Editors, Acoustics Australia School of Physics University of New South Wales Sydney 2052 Australia 61-2-93854954 (tel) 61-2-93856060 (fax) Acoustics Australia@coustics asn au PRINTING. ARTWORK Cliff Lewis Cronulla Printing Co. 91-93 Parraweena Road CARINGRAH NSW 222 Tel (02) 9525 658\$ Fax (02) 9524 8712 email: printing@clp.com.au SUBSCRIPTION RATES Aust Overseas 1 year A\$63.80 A\$73.00 2 year A\$110.00 A\$130.00 3 year A\$156.20 A\$187.00 Australian rates include GST Overseas subscriptions go by airmail Discounted for new subscriptions 20% Discount for extra conies Anents rates are discounted. ADVERTISING RATES R&W Non-members Sue Mem \$660.00 1/1 Page \$588.50 1/2 Page \$429.00 \$385.00 1/3 Page \$330.00 \$297.00 1/4 Page \$275.00 \$247.50 Snot colour \$121.00 per colour Prepared insert: \$357.50 Conditions apply Column rate: \$22.00 per cm (1/3 p 5.5cm width) All rates include GST Discounted rates for 3 consecutive ads in advance Special rates available for 4-colour printing All enquiries to: Mrs Leigh Wallbank Tel (02) 9528 4362 Fax (02) 9589 0547 wallbank@zipworld.com.au | ACOUSTICS AUST | RALIA ADVERTISER INDE | X - VOL 34 No.2 | |------------------------------|----------------------------|------------------------| | ARL99 | ETMC Inside back cover | Norman Disney & Young | | ACU-VIB Electronics | Kingdom Inside front cover | Peace | | Bruel & Kjaer 62, back cover | Matrix 62 | RTA Technology 78 | | CLP Cronulla Printing Co | NALInsert | Savery & Associates100 | | Davidson64 | Noise Control Australia 62 | Soundguard | ## NORSONIC Sound Level Meters ## Nor130 series of Sound Level Meters - Single Measurement Range - · Parallel LAeq and LCpeak - · Real-time octave - · Large internal memory - · Clock synchronized measurements - · Statistical analysis - Transfer software included Nor131 The Nor130 Series of Sound Level Meters are designed and manufactured to the latest sound level meter standards and comprises two products. The Nor131 is a Class 1 (precision) instrument whilst the Nor132 is designed in accordance with the less accurate Class 2 requirements. Both meters offer the same features with exception of the detachable preamplifier which is only available on the Nor131 version. ## Applications - Noise hazards in the workplace - · Prescription of hearing protection - Environmental noise investigations - Product noise testing ## ETMC Technologies 619 Darling Street ROZELLE NSW 2039 Tel: (02) 9555 1225 Fax: (02) 9810 4022 Web: www.etmc.com.au ## Your New Audio Analyze #### Reliable Audio Analysis PULSE™ Electroacoustics is a versatile platform for the evaluation of electroacoustic transducers. It includes a wide range of analysis capabilities allowing you to determine the important features of an electroacoustic device. ### Features - Frequency responses, distortion, directivity and more - Pre-selected measurement accuracy Fasy automatic real-time correction - of transducer response - One-button launch of predefined - measurement sequences New and historic data in one database - and displayed together import data from Brüel & Kjær's Audio Analyzer Type 2012 or even from some non- - Brüel & Kjær analyzers Flexible documentation using Microsoft Word and Excel with - Microsoft[®] Word and Excel with user-defined templates • Dedicated hardware for
reliability and - durability #### Modular Platform Combining PULSE Electroacoustics with one of the high-quality PULSE hardware front-ends reveals the ideal audio analyzer platform. Furthermore, this platform can be expanded by adding software packages to support vibration analysis, sound quality evaluation, data management, and advanced time data recording and analysis. For more information go to www.bksv.com/audio PULSE Electroacoustic HEADQUARTERS; DK-2850 NÆRUM + DENMARK + TELEPHONE: +4545800500 FAX: +454801405 . HTTP://WWW.BKSV.COM . E-MAIL: INFO®RKSV.COM Refail & King Australia Suite 2, 6-10 Talavera Road, P.O. Box 349, North Ryde NSW, 2113 Syd Tel: +61 2 9889 8888 Fax: +61 2 9889 8866 * wave-DCXX.COM.BU * DKG/SpecTels.com.a MELBOURNE: Suite 2, 2 Compark Circuit, Mulgrave, Victoria, 3170 Melbourne Sel: +61 3 9560 7555 Fax: +61 3 9561 6700 • www.bkxx.com au; • bk@xpectris.com au Brüel & Kjær 📲