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Musical and biological sounds have the property of being well organised and usually strictly harmonic in spectrum, though there are a
few notable exceptions such as the shimmering crash of a cymbal or the cry of the sulphur-crested cockatoo. It turns out, however, that
this apparent simplicity is constructed by the interaction of highly nonlinear feedback generators linked to resonators whose vibrational
modes are not in simple harmonic frequency ratios. This paper explores the way in which this apparent simplicity emerges from complex
interactions in the generation of instrumental sound and in the songs of humans and other animals.

INTRODUCTION

Musical instruments such as violins, flutes and trumpets
are designed to produce sounds that are pleasing to our ears,
and analysis shows that these sounds, when played steadily,
have exact harmonic spectra. This leads to the expectation
that we might hear smooth concords between notes whose
frequencies are in simple integer ratios, as is indeed found.
This seems to imply that everything about these instruments
is simple and linear, but this is very far from being the case.
Indeed nonlinearity is essential to produce these apparently
simple results. But sometimes nonlinearity takes control, as
in cymbals and gongs, giving rise to effects such as pitch glide,
subharmonics, and transitions to chaotic vibration. Very much
the same is true of the sounds produced in human speech and
singing and, more noticeably, in the songs of birds, where
we encounter almost pure tones, harmonic spectra, and even
chaotic screeches. In this short paper we explore the physics
and mathematics underlying this behaviour. The subject has
been discussed in more detail by Fletcher and Rossing [1]
(chapter 5) and by Fletcher [2, 3, 4] and in less technical form
by Backus [5] and by Johnston [6].

IMPULSIVELY EXCITED INSTRUMENTS

Musical instruments came in two types: those that produce
steady sustained sounds, such as violins and trumpets, and
those that are sharply excited and produce transient sounds,
such as plucked strings, bells and gongs. In the first case
there is a continuous input of energy and some sort of feedback
oscillation is generated, while in the second there is an initial
impulse after which the energy stored in the system gradually
decays because of internal and radiation losses. In both cases
the vibrating system is geometrically extended, whether it be
a taut string, a column of air, or a carefully shaped plate or
shell, so that it has many possible vibrational modes, and it
is the interplay of these modes that controls the sound that is
produced.

It might be thought that an elastic string held under tension
between two rigid supports is an ideally simple system, but
is it really? The “standard theory” treats the string as being
ideally thin and the vibration amplitude as being planar and
infinitesimal, but none of these assumptions holds in practice.

Instead, even for planar oscillation, the string motion is
described by an equation of the form
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where z is string the displacement at point x, L is the string
length, m is the string mass per unit length, and 7 the string
tension. The first term on the right-hand side is that for an
ideal string, the second term is the restoring force due to string
stiffness, which is proportional to its Young’s modulus £ and
the fourth power of string diameter d, while the third term is an
approximation to the extra tension produced by displacement
of the string from a straight line. The stiffness term stretches
the mode frequencies so that of the nth mode becomes
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where o is proportional to the ratio of string stiffness to
string tension. In the steel strings of the piano this causes
a pitch stretch of about half a semitone over the complete
keyboard compass because octaves are tuned to match the
second harmonic of the octave below.

In a string with inadequate initial tension, plucked with
large amplitude, the third term in equation (1) leads to an
unpleasant effect in which the tension, and therefore the
musical pitch, starts high and then gradually falls. This is
avoided by tightening strings to almost their breaking point.
The third term also introduces harmonic distortion, so that an
initial simple vibration at f| generates another vibration at 2 f;
and so on, or mixes the frequencies of two existing modes. As
if this were not enough, the vibrational tension of the third term
in equation (1) also excites longitudinal waves in the string,
and these couple the transverse modes in the z direction to
orthogonal modes in the y direction [7]. And all this is not
just mathematics — the effects contribute significantly to the
actual sound of a piano! Some piano makers, notably Wayne
Stuart in Newcastle Australia, have changed the exact form of
the pinning of the strings in their instruments to control some
of these effects, but I am not aware of any scientific study of
the results, which could well be concealed by other changes in
the design anyway. The whole behaviour of piano strings is
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Figure 1. Profiles of (a) a church bell, (b) a flat-centre Chinese Opera
gong, (¢) a curved-centre Chinese Opera gong, and (d) an orchestral
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Figure 2. Restoring force as a function of deflection for a flat circular
plate pinned at its edges (full curve) and for a slightly curved plate of
the same size (broken curve). The units shown are arbitrary

further complicated by the fact that they mostly occur in pairs
or triplets for each note, and the strings for a given note interact
with each other through the non rigid bridge over which they
pass. Weinreich [8] has treated this complication in detail and
shown many interesting consequences.

Many musical instruments of the impulsive or percussive
variety do not rely primarily on tension, as does the string,
but rather on elastic stiffness. The simplest are bells, which
have very thick walls, as shown in Figure 1(a), and are almost
completely linear in behaviour. The tuning of the modes of
such complex shapes is not simple, however. Church and
carillon bells are cast to traditional shapes and then adjusted
by removing material internally so that the frequencies of their
principal modes are in simple integer ratios, giving pleasant
musical sounds, one of the characteristics however being a
low-pitched musical minor third, with frequency ratio 6/5
relative to the ‘prime’ or dominant mode, and it is this that
gives bells their characteristic sound [1]. Many Eastern bells
or gongs, such as the Javanese gamelan, are not tuned in this
way however, and this gives rise to musical scales that are quite
different from the familiar Western ones [9].

Gongs are another form of percussive instrument, but here
the metal shell is thin compared to its diameter, as shown
in later panels of Figure 1, so that tension effects become
noticeable or even dominant. One very impressive effect is
that achieved in Chinese opera gongs, of which there are two
types. In the larger gong, shown in Figure 1(b), the main
vibrating element in the centre of the gong is quite flat so that
any vibration stretches it radially and raises both the tension

and the vibration frequency, as shown by the full curve in
Figure 2. As the vibration decays, the pitch falls towards its
small-amplitude value over a time of the order of one second.
In the smaller gong shown in Figure 1(c), the central portion
is slightly domed to a height of about 1 mm over its 10 cm
diameter. The tension forces are thus initially compressive
for small downward motion of the dome before becoming
tensile when the displacement exceeds twice the dome height,
though the stiffness maintains a restoring force as illustrated
by the dashed curve in Figure 2. For vibrations of moderate
amplitude this causes the frequency to rise as the vibration
decays, producing a sound that is complementary to that of the
larger gong [10].

Sharp changes in shape are important here, since the
tension term in equation (1) then acts at an angle and becomes
converted in part to a lateral force, generating modes at two
and three times the frequency of the original because of
further coupling to the original exciting mode slope [11]. The
nonlinearity thus leads to a progressive transfer of vibrational
energy from low to high modes, an effect that is particularly
noticeable in the large Chinese tam-tam gong often used in
orchestras, which has two rings of sharp bumps in its outer
profile, as shown in Figure 1(d). It is struck with a soft hammer
and the low-frequency initial sound becomes transformed over
a period of a second or so into a shimmering high-pitched
sound that is actually chaotic [12]. Indeed simple experiments
with metal gongs or cymbals of simpler shape show that
when vibrated at their centre they can display energy transfer
to higher harmonics of the exciting frequency, subharmonic
generation at frequencies as low as one-fifth of the exciting
frequency, or a transition to chaotic oscillation, depending upon
minor variations in the exciting frequency. In normal musical
playing, of course, cymbals are supported at their centre and
driven by a sharp asymmetrical impact, so that essentially all
modes are sharply excited. Mode interaction and transitions of
the kind discussed above then lead to a wide-band ‘shimmering’
sound.

SUSTAINED-TONE INSTRUMENTS

Sustained-tone instruments are very different in operation
from their impulsive cousins, and each consists of a system of
the type shown in Figure 3. The resonant system is normally
driven at a sufficiently low level that it is essentially linear
in behaviour, with all the nonlinearity being contained in the
active driver, the operation of which is controlled by feedback
from the resonator. If the driver were linear, then it would
simply maintain all the resonant modes of the string (for
violin-type instruments) or the air column (for woodwind and
brass instruments) at their natural frequencies, which are never
in exact integer ratios because of stiffness and end-pinning
effects in strings and geometric irregularities and the radiation
end-correction in wind instruments. It is clear, therefore,
that the nonlinearity of the feedback-driven oscillator must
somehow be responsible for producing the exact harmonics
observed in the sounds of these instruments. How does this
occur?

First let us look at why the driving oscillator is nonlinear.
In the case of a string driven by a bow, which consists of
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Figure 3. System diagram for a sustained-tone instrument consisting of
a feedback-excited nonlinear oscillator coupled to a multi-mode linear
resonator. Additional low-frequency control feedback is provided by
the performer in the case of a musical instrument
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Figure 4. (a) Frictional force of a bow as a function of the velocity
of the string relative to that of the bow. Units are arbitrary (b) Motion
of the string for bowing in the position and direction shown, the kink
moving around the broken curve

hairs coated with rosin, the static friction is very high so that
the string essentially sticks to the bow and is drawn sideways.
Ultimately, however, the restoring force due to tension exceeds
the static frictional force and the string begins to slip. Because
sliding friction is much smaller than static friction, as shown
in Figure 4(a), the string then slips almost unimpeded until
it reaches the farther extreme of its motion, when it is again
captured by the bow and the cycle repeats [13, 14]. The
envelope of the string motion is shown in Figure 4(b), with the
slope discontinuity moving with uniform velocity between two
parabolic envelope curves. The string itself does not radiate
appreciable sound, but it passes over a bridge support at one end
and its varying slope at this point produces an excitation force
that is passed on to the body of the instrument. The vibrational
response of the instrument body is linear, but is modified by
its own resonances, so that the spectrum of the radiated sound
depends both upon the string excitation and the instrument body
response.

The structure of a woodwind reed instrument such as the
clarinet is illustrated in Figure 5(a). For such an instrument, the
generator consists of a valve with a fixed aperture covered by a
thin cane reed that is partially open in its rest state. Because the
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Figure 5. (a) Geometry of the mouthpiece and reed of a clarinet
(b) Volume flow through the reed aperture as a function of the pressure
difference across the reed The effective resistance is negative in the
region AB

natural vibration frequency of the reed is much higher than that
of the note being played, a quasi-static analysis shows what is
going on. Initially the volume flow through the reed increases
as the pressure difference p across it is increased, conservation
of energy dictating that the flow velocity is proportional to
the square root of the pressure difference (Bernoulli’s law).
However the pressure difference also tends to progressively
close the reed opening, so that the overall volume flow U has
the form

Ulp) = ap'?(1-Pp) it p<p'
0 it p>p~! )

where o and 3 are constants. This relation is shown in
Figure 5(b), and it can be seen that the valve impedance dp/dU
is very nonlinear and is negative in the range A to B, which
is what allows the valve to act as an acoustic generator. This
will work, though with somewhat more complex analysis, at
all frequencies up to the free resonance frequency of the reed
itself. The constricted double reed of an oboe has an even more
complicated flow behaviour because of the flow constriction
caused by its narrow channel.

When we consider lip excited brass instruments, the
situation is rather different because the lip aperture is blown
open by the pressure differential, rather than being blown
closed. This complicates the behaviour, and valve oscillations
can be maintained only at a frequency just above the natural
vibration frequency of the lips, the phase shift again making
the resistance negative in this region, at least in a simple model
[1, 15]. Because trumpets and trombones are often played very
loudly, this is the one case in which the resonator can become
nonlinear, leading to distortion of the propagating wave in the
cylindrical part of the bore and consequent transfer of acoustic
energy from low to high-frequency modes and even to shock
waves [16].

Finally, consider instruments such as flutes and organ pipes
that are excited by a planar air jet blown across an aperture near
one end of the pipe as shown in Figure 6(a). The physics of
this jet excitation is rather complicated [1, 17], but essentially
the jet is acted on by the acoustic flow through the aperture
and this generates a displacement wave that travels along the
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Figure 6. (a) Geometry of the mouth of an organ flue pipe. Waves
are excited on the jet by acoustic flow through the mouth of the pipe
and grow in amplitude as they propagate towards the pipe lip (b) Flow
into the pipe mouth as a function of jet deflection at the lip. Units are
arbitrary

jet at about half its airspeed. The jet then blows alternately
into and out of the pipe where it meets the other edge of the
aperture. The phase shift introduced by the initial excitation
and the travel time of the displacement wave along the jet makes
the flow resistance negative over a limited frequency range, thus
allowing the player to choose which mode of the pipe resonator
is being excited. For displacements that are small compared
with the jet width, the inflow is linearly related to the excitation,
but for larger displacements the flow saturates, as shown in
Figure 6(b), generating odd harmonics of the fundamental. If
the jet centre-plane is offset with respect to the edge, then the
flow waveform becomes asymmetrical and even harmonics are
generated as well [18]. These air-jet excited instruments are
one of the few cases in which the transition to mode-locked
harmonic sound has been studied, as will be discussed in the
next section.

FORMAL ANALYSIS

Now that the origins of inharmonicity on the resonator
and of nonlinearity in the generator have been explained, it is
possible to proceed with a formal analysis of the behaviour of
the musical instrument system shown in Figure 3. There are
many ways in which this can be done, but one of the simplest
is in the frequency domain where one examines the combined
response of the resonator modes coupled to the generator using
the method of slowly varying parameters [1].

For simplicity, consider first just the case of a single
vibrational mode

yu(t) = aysin(wyt + ¢y) )

and allow that both the amplitude a, and the phase ¢, may
vary with time slowly compared with @,. Suppose that, in the
system considered, y, satisfies the equation

y.nJng.Vn :g(ynaynat) (5)

where the dots signify differentiation with respect to time and
the nonlinear function g represents the excitation provided by

the generator under the influence this mode. Substitution of
equation (4) into equation (5) gives a complicated result, but
this can be simplified if we assume that

Yn = An @y cos(ut + Op) . (6)
This assumption requires that
G SN (@t + @) + andp cos(@ut + ¢,) =0, @)

but substituting equations (4), (6) and (7) into equation (5) then
leads to the simple results

a, =

£ cos(@it +,) ®)

n

o, = -— sin( @yt + @y,) , 9)

ay Wy
where g is expressed in terms of y, and y, as given by equations
(4) and (6).

These two equations (8) and (9) allow us to calculate the
steady mode amplitude a, for which @, = 0 and also the
steady vibrational frequency @, + ¢,, which will generally
be different from the resonant frequency @,. The whole
analysis can also be extended to treat the realistic case of a
multi-mode system in which the modes interact because of
the nonlinearity of the generator. It can be shown that this
interaction leads to the locking of all the mode oscillations
into an exactly harmonic (integer frequency ratio) distribution
provided the natural mode frequencies are not too distant from
this relationship initially [19]. If two prominent modes
and ®; are very far from integrally related in frequency, as
can happen with peculiar fingerings of woodwind instruments,
then the resulting oscillation may involve both of them, and
the system nonlinearity will produce a “multiphonic” sound
containing all frequencies m®; &= nw; where m and n are
integers. These sounds are exploited in certain modern musical
compositions for woodwinds [20].

This analysis can also be applied to transient sounds in
which the generating function g depends upon time. An
obvious example is the case of impulsively excited instruments,
but the initial transient is also of great importance in defining
the character of sustained-tone instruments, psychoacoustical
studies showing that it is largely the initial transients that
characterise the identity of a musical instrument, since identity
is lost to the hearer if these are removed. This feature is also of
great importance in the electronic synthesis of realistic musical
sounds.

If the excitation begins abruptly, as is the case at the
beginning of a musical note, then this stepwise or even
impulsive excitation will excite all the modes of the instrument
to vibrate at their natural frequencies, which are never in
exact harmonic relationship, and it is only after a significant
time, typically ten or more cycles of the fundamental, that
the mode frequencies are captured by the nonlinearity in the
way discussed above and locked together to produce an exactly
harmonic sound. This transition has been examined in detail in
the case of organ pipes [21] and an example of the calculated
results is shown in Figure 7. The pipe modes, which are
not in exactly harmonic relationship, are initially all excited
in-phase by the jet impulse. Interaction between the modes
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Figure 7. Evolution of the velocity amplitudes and frequencies of the
first three modes of an organ pipe as calculated from equations (8) and
(9) and a detailed model of wave propagation on the air jet and its
interaction with the pipe air-column [21]

through the nonlinear behaviour of the jet then causes both
mode amplitudes and frequencies to evolve to a stable harmonic
relationship — a typical example of the emergence of order
through complex interactions.

ANIMAL SOUNDS

As in musical instruments, the sounds produced by animals
can be divided into two classes — those in which the excitation
is essentially impulsive and those in which it is continuous —
but the division is not so clear since many quasi-continuous
insect sounds are really prolonged sequences of impulsive
sounds. Once this is recognised, much of the analysis applied
to musical systems can also be applied to biological systems
[2,3].

The simplest systems, which are employed largely by
water-dwelling crustaceans such as crabs, produce sounds that
are just sequences of clicks. This is done by snapping together
or flicking apart two body parts that are covered by a stiff elastic
shell. Because the shell generally covers some sort tissue, the
sound is abruptly damped and has little if any tonal component.
In air-dwelling insects such as crickets this system has evolved
so that a file containing many teeth, and generally located on
a leg, is drawn rapidly across a resonant structure such as a
wing. While this bears some resemblance to a bowed string,
the damping is again such that the oscillation produced by
the impact of each tooth has almost dissipated before the next
impact occurs. Since the pic on the structure must slip off
the tooth each time, however, there is some chance that these
releases will be phase-locked to the vibration, perhaps giving
harmonic relations. The loudest insect of all, the cicada, makes
its sounds by the rhythmic collapse and release of thin ribbed
plates, or tymbals, that cover a large resonant abdominal cavity,
giving a rapidly pulsating song near its characteristic frequency,

which ranges from about 600 Hz to above 3 kHz depending
upon the species. From the point of view of the present chapter,
there is nothing very interesting about these sounds.

The more interesting sounds from the present viewpoint are
those produced by air-breathing animals, including birds and
humans. These are generally sustained sounds, like the vowels
in human speech, punctuated by impulsive or chaotic sounds
like the consonants. The vowel-like sounds are produced by
a vibrating valve, rather like a tiny pair of human lips, located
between the lungs and the mouth. In the case of most mammals,
including humans, this valve is near the top of the trachea or
wind-pipe near its junction with the mouth, while in birds it
is near the base of the trachea. In the case of songbirds there
are actually two vocal valves, one in each of the bronchi or
tubes leading from the lungs just below their junction with the
trachea, allowing them to sing two notes at once if they choose
to do so. This structure is known as the syrinx.

In humans, other mammals and many birds the vibration
frequency of the vocal valve is below the frequency of the first
resonance of the vocal tract, so that there is not the same sort of
coupling between the source and the resonant filter provided
by the upper vocal tract. Indeed it is reasonable to model
these systems as an autonomous vibrating valve producing a
pulsating airflow that is rich in harmonics because the valve
ordinarily closes once in each cycle, coupled to the upper vocal
tract which then provides an adjustable filter that modifies the
spectral envelope of the sound to produce distinctive patterns
that we know as vowels, each being characterised by maxima
in its spectra, known as formants, close to the tract resonance
frequencies. This is called the ‘source-filter model’. Only in
high soprano singing does the fundamental pitch approach the
frequency of one of the higher vocal tract resonances, and there
is then a coupling between the two which gives a comparatively
pure tone and reduces the distinction between different vowels.
Something similar happens in the case of pure-tone songbirds
as is discussed below.

While humans can make a pure-tone sound by whistling,
involving an air jet and the mouth as a Helmholtz resonator,
some birds can produce similar nearly pure-tone songs that are
swept over a large frequency range, but they do not do it by
whistling. Their vocal tract is connected to an elastic part of
the upper esophagus, leading to the stomach, and this can be
expanded to produce a quite large vocal cavity of adjustable
size. Once again the pitch of the song is adjusted largely by
changing the volume of this cavity [22]. Some animals, such as
doves and frogs, can even produce pure-tone songs with their
beak or mouth closed, a feat which they perform by inflating
a vocal sac in the throat with very thin skin surrounding it and
exhaling into this through their vibrating vocal valve, which
they tune to the resonant frequency of the sac volume loaded
by its vibrating walls. In the second or so that the call lasts,
the volume of the inflated sac does not change greatly, and the
small change is compensated for by the thinning of the walls.

Another interesting case is the very loud cry of the
sulphur-crested cockatoo (Cacatua galerita). This harsh sound
is at odds with the beauty of the bird, but accords well with
its destructive behaviour! The interesting thing is that, when
the waveform of the recorded cry is examined closely, it is
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found to be truly chaotic with a Lyapunov exponent of about
0.3 [23]. The great loudness of the screech is partly explained
by its frequency, which covers a broad band from about 2 to
4 kHz where human hearing is most sensitive, but the bird also
invests a considerable effort in producing it. The anatomical
and physiological basis of this cry (one hesitates to call it a
song!) has not yet been established, but it seems likely that
the vocal valve, or syrinx, has an extended flap-like structure
that can move chaotically like a flag flapping in the wind, even
though it is probably secured all around its periphery.

Finally we should mention the interesting combination of
vocal and instrumental sounds that is sometimes used in the
Australian didjeridu, or yidaki as it is called by the Yolngu
people of Arnhem Land who perhaps originated the instrument
[24]. The didjeridu consists of a simple tube, about 1.5 m long
and 30 to 50 mm in diameter, cut from a small tree trunk that
has been hollowed out by termites. The drone sound, typically
at about 60 Hz, is made by buzzing the lips as in a brass
instrument, and this is accompanied by a full range of upper
harmonics. The interesting tonal sounds characteristic of the
didjeridu are then made by varying the geometry of the vocal
tract, again largely by moving the tongue, so as to produce
spectral peaks or formants not unlike those in speech, the
emphasised frequencies being those lying close to a minimum
in the vocal tract impedance as seen from the lips [25, 26].
Even more interesting in the present context are the sounds
that can be made by simultaneously vibrating the folds of the
vocal valve, as when singing a note of frequency ®, and also the
lips, under the control of the fundamental didjeridu resonance at
frequency ay. Since the two vibrating valves are in series, their
effect is multiplicative rather than additive, and the resulting
flow contains frequencies mmy == nw [27]. Thus if the player
vocalises a note a musical fifth above the drone fundamental,
so that @ = (3/2)ay, then the nonlinearity of the combined
valves will produce a subharmonic at frequency @y /2, together
with all its harmonics. For the singing of more complex sounds,
there will be a large variety of frequencies produced.

CONCLUSIONS

In this short paper there has been time only to glance
briefly at some of the interesting features of sound production
in musical and biological systems. While the systems
themselves consist of complex interacting nonlinear elements,
the interesting outcome is that these often act together to
produce a deceptively simple outcome, with strictly harmonic
waveforms and well controlled behaviour. There are a few
interesting exceptions, however, and these will doubtless repay
detailed study some time in the future.

The work described in this paper has been carried out
by many researchers around the world, and the literature
documenting it is voluminous. The references I have cited are
largely to work with which I have been personally associated, a
fault for which I should perhaps apologise.
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